
Scalable Address Spaces using Concurrent Interval
Skiplist

Tae Woo Kim

taewoo.kim99@kaist.ac.kr
KAIST

Daejeon, Korea

Youngjin Kwon

yjkwon@kaist.ac.kr
KAIST

Daejeon, Korea

Jeehoon Kang

jeehoon.kang@furiosa.ai
KAIST / FuriosaAI

Seoul, Korea

Abstract
A kernel’s address space design can significantly bottle-

neck multi-threaded applications, as address space opera-

tions such as mmap() and munmap() are serialized by coarse-

grained locks like Linux’s mmap_lock. Such locks have long

been known as one of the most intractable contention points

in memory management. While prior works have attempted

to address this issue, they either fail to sufficiently parallelize

operations or are impractical for real-world kernels.

We present the first scalable and practical address space

design that parallelizes critical operations. We identify key

scalability bottlenecks—many of which extend beyond ad-

dress spaces—and address them with targeted solutions. At

its core is the concurrent interval skiplist, a new data struc-

ture that integrates mapping and locking for parallel inter-

val operations. We implement our design on Linux 6.8 and

evaluate it on a dual-socket 48-core machine. Our results

show a significant throughput improvement of 13.1× for an

mmap() microbenchmark, 4.49× for LevelDB, 3.19× for the
Apache web server, 1.47× for Metis MapReduce, and 1.27×
for Psearchy text indexing.

CCS Concepts: • Software and its engineering→ Oper-
ating systems; Virtual memory; • Computing method-
ologies→ Concurrent algorithms.

Keywords: Operating Systems, Address Spaces, Scalability

ACM Reference Format:
Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang. 2025. Scalable

Address Spaces using Concurrent Interval Skiplist. In ACM SIGOPS
31st Symposium on Operating Systems Principles (SOSP ’25), October
13–16, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA,

18 pages. https://doi.org/10.1145/3731569.3764807

1 Introduction
The OS kernel’s virtual memory management system man-

ages a process’s address space through operations that fall

into the following categories. (1) Fault operations lookup the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

SOSP ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1870-0/2025/10

https://doi.org/10.1145/3731569.3764807

Apache (single process) Metis Psearchy LevelDB

0 20 40 60 80 10
0

Threads

0.0

0.2

0.4

0.6

0.8

1.0

wa
it

tim
e

/ t
ot

al
 ti

m
e

Figure 1. Ratio of time wasted waiting for the mmap_lock to
total execution time on Linux 6.8.0 for various applications.

address space and update its page table as necessary. (2) Alloc
operations allocate an address interval via the mmap() system
call in POSIX-compliant systems. This is frequently used in

modern malloc() implementations to create multiple inde-

pendent arenas for multicore performance [22, 31, 33],
1
and

when creating file-backed memory. (3) Modify operations

update the address space by modifying existing mappings

via the munmap() or mprotect() system calls.

Problem. Current address space designs can significantly

bottleneck multi-threaded applications due to the serializa-

tion of Alloc andModify operations. In the kernel, this se-

rialization stems from the use of a coarse-grained lock to

synchronize address space operations [13], such as the read-

write mmap_lock in Linux. While Faults acquire the lock in

read mode (or not at all, see §2.2), enabling their parallel exe-

cution, Alloc andModify operations acquire the lock in write

mode, which can lead to serialization. This lock has long been

recognized as “one of the most intractable contention points

in the memory-management subsystem” [17, 18].

This issue indeed severely impacts numerous virtual mem-

ory intensive applications that frequently invoke Alloc or
Modify operations [10, 40]. Experiments on Linux 6.8.0 (re-

leasedMarch 2024) with a dual-socket 48-core machine using

lockstat [27] reveal significant performance degradation.

Fig. 1 shows that the Apache [2] web server, the Metis [45]

MapReduce framework, Psearchy [10] text indexing, and

LevelDB [30] waste up to 90%, 60%, 41%, and 40%
2
of their ex-

ecution time, respectively, waiting for the mmap_lock at high

1
In contrast, older implementations of malloc() often use a single heap

managed by brk(), which limits scalability by concentrating contention.

2
For LevelDB, this ratio decreases at high thread counts because LevelDB’s

global database lock [3] becomes a larger bottleneck (see §7.3).

1131

https://orcid.org/0000-0003-4257-5294
https://orcid.org/0000-0001-5602-2397
https://orcid.org/0000-0002-2115-0871
https://doi.org/10.1145/3731569.3764807
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764807
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731569.3764807&domain=pdf&date_stamp=2025-10-12

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

thread counts. Contention on mmap_lock directly hinders

multicore scalability (see §7 for experimental details).

Prior work. Despite prior efforts to address these issues,

the fundamental problem remains largely unsolved. These

efforts either fail to parallelize Alloc andModify operations

or are impractical for real-world kernels (see §8 for details).

In Linux, many proposals have been made, but none fully

parallelizes the Alloc or Modify operations. For instance,

Linux recently introduced per-VMA locking [19], allowing

Faults to run in parallel with Alloc orModify, but still serial-
izes the Alloc andModify operations. As such, a significant

portion of time is wasted even in Linux 6.8.0, which sup-

ports per-VMA locking (Fig. 1). As another example, several

Linux patches [11, 41] attempted to parallelize operations

by replacing the mmap_lock with a range lock, but they still

typically require global locking (see §8.3).

RadixVM [14], implemented on the sv6 research kernel,

is the only approach that parallelizes Alloc andModify op-

erations. However, its radix tree is not well-suited for RCU,

which is crucial for performance (see §3.2). Moreover,

RadixVM makes simplifying assumptions that makes it im-

practical for real-world adoption. For example, it relies on

a simplistic heuristic that can rapidly exhaust the address

space, and it uses per-page metadata, causing significant

memory overhead.

Several applications use workarounds to circumvent the

bottleneck, but each has significant drawbacks. Using multi-

ple processes instead of threads can improve scalability, but

can require heavy inter-process communication and large

changes to the application structure. Performing mmap() in

large chunks can reduce contention, but can substantially in-

crease memory usage and fragmentation [6]. Many popular

malloc() implementations, such as jemalloc [22] (in 64-bit

Linux) and tcmalloc [31], do not perform munmap() at all,

tying up memory and placing additional burden on the oper-

ating system [14]. Moreover, even with these workarounds,

current address space designs will easily bottleneck applica-

tions as memory usage and thread counts increase.

Our approach. We introduce a new scalable address space

design that effectively parallelizes not only Fault but also
Alloc and Modify operations. At its core is a new concurrent
interval skiplist that integrates mapping and locking to sup-

port parallel interval operations. We further introduce new

locking schemes, Alloc strategies, and scalable counters, all

of which are essential for building a truly scalable address

space. Specifically, we make the following contributions.

In §3, we analyze the scalability challenges of address

spaces and outline our solutions. A core challenge is replac-

ing the coarse-grained lock with fine-grained ones while ad-

dressing the dynamic nature of the required locking intervals.
Furthermore, we identify several new scalability challenges

that were not previously discussed in the literature. Many of

the challenges have broad applicability, extending beyond

address spaces to diverse real-world systems.

In §4, as a key solution to the scalability challenges, we

introduce the concurrent interval skiplist. Similar to existing

data structures for address spaces, it implements an interval
map, where each node maps an (address) interval to a value.

This interval skiplist handles the dynamic nature of locking

intervals by integrating the functionalities of both amap data

structure and a locking mechanism. Furthermore, it supports

parallel interval operations via fine-grained locking, while

ensuring RCU-safe, lock-free traversals.

In §5, based on our interval skiplist, we propose a new

address space design that parallelizes operations. We design

(1) a general locking scheme that complements fine-grained

locks with efficient support for global locking, (2) a scalable
Alloc strategy based on a redesigned process address space

layout and hierarchical leveling within our interval skiplist,

and (3) a scalable counter to enforce resource limits.

In §6, we describe our implementation on Linux 6.8.0. Our

implementation supports POSIX and is fully transparent to

applications, requiring no modifications to them.

In §7, we evaluate the performance. Our design outper-

forms Linux in throughput, by up to 13.1× for an Alloc mi-

crobenchmark, 4.49× for LevelDB, 3.19× for the Apache web
server, 1.47× for Metis MapReduce, and 1.27× for Psearchy

text indexing.

Our implementation and evaluation scripts are available

at https://github.com/kaist-cp/interval-vm.git.

2 Background
2.1 Interval Map
An interval map is a data structure where each node asso-

ciates an interval with a value. It is a fundamental structure

for managing spaces or memory in address intervals. Exam-

ples in kernels include address spaces, device drivers [23, 24],

arenas [26], and file systems [25]. As we will see below, these

use cases often require querying the interval map, allocating

an interval, updating an interval, or removing one.

2.2 Address Space
We review address spaces, which consist of (1) an address
map for virtual memory metadata, and (2) a page table hier-
archy that maps virtual pages to physical frames.

Address map. The kernel maintains an interval map that as-

sociates an address interval with a corresponding metadata
structure (e.g., VMA in Linux, vm_map_entry in FreeBSD,

or VAD in Windows [55]). This structure stores informa-

tion about the interval, such as permission flags and the file

associated with file-backed memory. Fig. 2 illustrates an ex-

ample address map, where [0x2A, 0x46] is file-backed, while
[0x21, 0x28] and [0x50, 0x58] are not (i.e., anonymous).

To implement address maps, Linux, FreeBSD, Windows,

and other operating system kernels use red-black trees [34],

1132

https://github.com/kaist-cp/interval-vm.git

Scalable Address Spaces using Concurrent Interval Skiplist SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

address space

page table

page directory

metadata
structure

metadata
structure

metadata
structure

anon file anon0x21 0x28 0x2A 0x46 0x50 0x58

(2) page table
hierarchy

(1) address map

Figure 2. An address space consisting of an address map

and a page table hierarchy. Each metadata structure in the

address map is connected to its corresponding page table

entries via dashed lines. An orange block in the page table

hierarchy represents a present entry. A metadata structure

can be partially mapped in page tables under lazy allocation.

B-trees [5], splay trees [50], or AVL trees [1]. In particular,

Linux 6.8.0 uses an RCU-safe B-tree, known as the maple
tree [36], as the address map. In a maple tree, traversals are

lock-free, allowing them to be performed in parallel with

updates during an RCU critical section.

Page table hierarchy. The kernel maintains a hierarchical

mapping from virtual addresses to physical addresses for the

CPU. In a four-level page table hierarchy, for example, the

page table is at the lowest level, while the page middle direc-
tory, page upper directory, and page global directory occupy

higher levels. Fig. 2 illustrates two page tables referenced by

a page middle directory.

Operations. We focus on three kinds of address space oper-

ations.

Fault operations handle page faults. A page fault occurs

when the CPU accesses a virtual address that is not mapped

or permitted in the page table. For minor page faults, which
typically occur when accessing a virtual address for the first

time under lazy allocation, the handler retrieves information

for the faulting address from the addressmap and updates the

page table. A new page is zero-filled for anonymous memory

or populated with the contents for file-backed memory. For

major page faults, which occur when accessing a virtual

address whose data resides on a swap device, the handler

pages the data in from the device. Because major page faults

suffer from the high latency of secondary storage devices,

we focus on the scalability of minor page faults.

Alloc operations handle the allocation of an address in-

terval, such as invoking mmap() on the NULL address. They

are used in modern implementations of malloc() to create

multiple independent arenas for improved multicore per-

formance [22, 31], and in memory-mapped I/O to map an

address interval to a file. An Alloc operation linearly tra-

verses the address map to find a large enough unused space,

claims it, and adds a mapping for it in the address map.

Modify operations handle updates to the address space.

For example, an unused interval can be freed with munmap()

or repurposed by overwriting it with mmap(). Also, we may

shrink or extend an interval using brk() or mremap(), or
update the metadata using madvise() or mprotect(). These
operations may span multiple intervals in the address map,

requiring updates to multiple metadata structures.

Synchronization baseline. For correctness, address space
operations must be properly synchronized, and kernels use

locks for synchronization, as we describe here.

Address space locks are used to synchronize address

space operations.Most kernels employ a single coarse-grained

read-write lock (e.g., FreeBSD’s vm_map->lock), whereas
Linux 6.8.0 adopts a more sophisticated approach. In Linux,

the primary lock is the mmap_lock, which is a coarse-grained
read-write lock that synchronizes Alloc,Modify, and some

Fault operations. Both Alloc andModify operations always

acquire the mmap_lock in write mode, potentially resulting

in their serialization. Certain Fault operations, such as major

faults, acquire mmap_lock in read mode. However, in Linux

6.8.0, Fault operations more commonly rely on per-VMA
locks [19] to synchronize with concurrent Alloc andModify
operations. Rather than acquiring mmap_lock, a typical Fault
operation proceeds as follows: (1) it searches for the VMA

in the address map using a lock-free traversal, to synchro-

nize with a concurrent address map update due to Alloc and
Modify operations. Here, the use of the RCU-safe maple tree

is essential. Then (2) it read-locks the VMA using its associ-

ated read-write lock, to synchronize with the overlapping

Alloc and Modify operations that write-lock the same VMA.

This allows Fault operations to execute in parallel with a

non-overlapping Alloc orModify operation.

Page table hierarchy spinlocks protect updates to the

page table hierarchy. In Linux, for example, each page table

and page middle directory has its own lock, while higher-

level tables share a global lock due to low contention. These

spinlocks are fine-grained and held only briefly, causing

minimal contention [13]. As such, we follow the literature to

use these spinlocks and focus on the contention of address

space locks.

3 Scalability Challenges and Our Ideas
We identify several significant challenges to achieving scala-

bility in address spaces, such as replacing the coarse-grained

address space lock with fine-grained locks to enable parallel

operations. Prior work has not discussed these issues (except

for the one discussed in §3.1) and thus has not adequately

addressed them (see §8 for details). Many of these challenges

extend beyond the address space itself, limiting the scalabil-

ity of diverse real-world systems. We outline each challenge

and briefly describe our approach to addressing it.

3.1 Dynamic Locking Intervals
Address space operations often access multiple structures,

such as metadata structures or page tables, whose boundaries

1133

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

address
space

munmap() range

metadata structure

munmap() range

Figure 3. Two munmap() calls unmap distinct intervals but

must access the same metadata structure, which spans both

intervals.

address
space

page table
(to be freed)

munmap() intervalneighboring gap
metadata
structure

metadata
structure neighboring gap

interval that needs to be locked

Figure 4. Not only the munmap() interval but also the neigh-
boring gaps must be locked to safely free the page table.

may not align with the operation itself [38]. Both address

space operations and metadata structures start and end at

arbitrary points aligned to 4KiB pages. Furthermore, each

page table typically spans a 2MiB region, which may not

align with either the boundaries of the metadata structures

or the operation’s interval.

This misalignment makes it particularly challenging to re-

place the coarse-grained address space lockwith fine-grained

locks for scalability: the required locking interval to safely

perform an operation depends on the address map’s dynamic

state. For instance, Fig. 3 shows that even operations target-

ing disjoint intervals must be synchronized if they access

the same metadata structure. To maintain consistency, the

lock interval must cover the entire metadata structure.

Fig. 4 presents a more complex example in Linux. After

an munmap() operation clears page table entries, it must also

free any now-empty page tables. Instead of scanning the

page table after every update, Linux optimizes this process

by freeing page tables whose address intervals no longer in-

tersect with any metadata structure. Specifically, it traverses

the page table hierarchy and frees any table fully contained

within the munmap() interval and its neighboring gaps. Cru-
cially, while freeing these tables, the lock interval must also

include these neighboring gaps to prevent concurrent opera-

tions from repopulating them.

To address this issue, previous approaches [11, 38, 41, 43]

typically (1) traverse the address map to identify the exact

interval to lock, and (2) lock that interval. However, splitting
the operation into two distinct steps fundamentally compli-

cates synchronization as follows, often forcing them to fall

back on coarse-grained locks (see §8.3 for details).

• A race can occur between (1) and (2), causing the initially
identified interval to become outdated and requiring a

retry. This problem is especially prevalent under high

contention, where multiple concurrent updates target

the same region of the address map (cf. §3.4).

target interval

root

Figure 5. Under RCU, updating the blue leaf nodes requires

copying and replacing their red ancestor nodes.

• The address map itself must be protected by a separate

lock or other concurrency control mechanisms. The lock

acquired in step (2) does not protect the traversal in step

(1), as the traversal occurs beforehand.

Our idea. We unify these two steps within our new concur-

rent interval skiplist, which supports both lock-free traversal

and node-granular locking on an interval map (§4).

3.2 Scalable and RCU-Safe Interval Updates
Scalable interval updates. Existing interval maps serialize

interval updates to guarantee atomicity across all consecu-

tive nodes in the interval. These designs are optimized for

single-node operations rather than updates spanning multi-

ple nodes, highlighting the need for scalable interval update.

RCU-safe interval updates. RCU-safe support for interval
updates is also crucial for performance, but achieving it effi-

ciently is challenging with existing data structures. RCU en-

ables Fault operations to proceed concurrently with updates

(see §2.2), and allows an Alloc operation to scan the address

map for free space without locking the entire address space.

Without RCU, performance can degrade significantly [13].

However, traditional tree-based structures are not well-

suited for RCU. Enabling RCU requires updates to proceed by

(1) copying a structure, (2)modifying the copy, and (3) atom-

ically replacing the original. This process becomes costly

when an interval spans multiple subtrees, since every node

along the affected paths must be copied. As illustrated in

Fig. 5, updating the blue leaf nodes requires duplicating and

replacing their red ancestor nodes. Tree rebalancing exac-

erbates the problem, as it may need to modify neighboring

nodes or propagate upward to a parent, increasing the num-

ber of affected nodes. In addition, efficiently synchronizing

such updates with locks remains an open challenge.

The cost grows further in data structures that store many

entries per node for performance. For example, Linux’smaple

tree stores 10–16 entries per node, while RadixVM’s radix

tree stores 128–512 entries. This increases the cost of copying,

and the entire node must be copied even when only a few

consecutive entries are updated.

Our idea. In §4, we design a scalable interval skiplist that

supports atomic updates of consecutive nodes using node-

granular locks, while remaining RCU-safe.

1134

Scalable Address Spaces using Concurrent Interval Skiplist SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

3.3 Operations on the Entire Data Structure
Certain operations span the entire address space and thus re-

quire global locking. These include fork(), which clones the
address space, and exit(), which destroys it. Simply replac-

ing the coarse-grained address space lock with fine-grained

alternatives (e.g., per metadata structure) would force these

operations to acquire all fine-grained locks, leading to signif-

icant overhead—especially since applications often manage

hundreds of thousands of metadata structures [12, 48].

This challenge is not unique to memory management. For

instance, the coarse-grained inode locks (inode->i_rwsem)
in Linux are a well-known scalability bottleneck [47], and

prior work has attempted to address this by introducing

fine-grained locks, e.g., using a separate lock for each 4KiB

block [37]. However, this approach incurs significant over-

head for common file system operations, such as copy or

remove, which need to access all blocks and thus require

locking them simultaneously [38].

This problem is especially pronounced when transitioning

from coarse- to fine-grained locking. In such cases, all fine-

grained locks often need to be acquired simultaneously, as

legacy code lacks support for finer-grained locking mecha-

nisms. This kind of staged transition is frequently necessary

in large-scale systems, where an all-at-once overhaul is in-

feasible due to its complexity [17].

Our idea. In §5.1, we design a new distributed lock that

complements fine-grained locks to efficiently support global

locking. Our key idea is to lock CPU cores rather than indi-

vidual structures, such as nodes or metadata structures.

3.4 Alloc Strategy
A kernel’s Alloc strategy can also severely limit scalability.

When handling an Alloc operation, kernels such as Linux

or FreeBSD use a first-fit strategy: they linearly traverse the

interval map from a common starting point until they find a

sufficiently large unused region, which they then claim, such

as by inserting a new interval. However, this approach causes

concurrent Allocs to contend at the same point—the first
available space after the common starting point—introducing

a severe performance bottleneck (see §7.2).

Our idea. In §5.3, we introduce a scalable Alloc strategy

that (1) inserts nodes with atomic instructions like CAS,

(2) redesigns the process address space layout to include

multiple arenas, and (3) organizes the interval skiplist to

support arenas in a scalable manner.

3.5 Resource Limits
In kernels, system-wide limits on specific resources are com-

monly enforced using mechanisms such as sysctl or the

POSIX setrlimit(). For example, the number of metadata

structures or pages in an address space can be restricted.

However, maintaining global counters for such resources

can become a significant performance bottleneck due to

synchronization and cacheline bouncing. This bottleneck

becomes prominent once other performance limitations are

addressed (see §7.2 for experiments). While Linux offers

an alternative counting mechanism called percpu_counter,
which buffers updates in per-core counters and periodically

flushes them to a global counter when a threshold is reached,

it cannot enforce strict limits.

Our idea. In §5.3, we introduce a scalable counter that

achieves both scalability and enforcement of limits. Our ap-

proach is adaptive: it gradually phases out the use of per-

core counters as the global counter approaches its limit. This

design is crucial for scalable Alloc and Modify operations,

which frequently update these counters.

4 Concurrent Interval Skiplist
We introduce our data structure’s interface (§4.1), design a

concurrent interval linked list (without skip links) that imple-

ments the interface (§4.2), and extend it to a interval skiplist

(§4.3). In the appendix, we provide detailed pseudocode (§A)

and discuss correctness (§B).

4.1 Interface
An interval map typically supports the following operations.

(1) Query(𝑘𝑒𝑦): Retrieves the interval containing the speci-

fied key—typically a specific integer or address of interest—

and returns the associated value.

(2) Map(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑣𝑎𝑙𝑢𝑒): Assigns a value (or unassigns if
𝑣𝑎𝑙𝑢𝑒 is NULL) to the interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑], overwriting
any existing mappings for overlapping parts.

(3) Alloc(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑣𝑎𝑙𝑢𝑒): Inserts an interval of the

given 𝑙𝑒𝑛𝑔𝑡ℎ within the interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] and asso-

ciates it with the given 𝑣𝑎𝑙𝑢𝑒 .

To address the scalability challenges of address space man-

agement, our concurrent interval skiplist additionally pro-

vides the following operations. We use these new operations

as building blocks not only for the above operations but also

for address space operations (see §5 for details).

(4) Lock(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑): Acquires exclusive write lock for the

interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑], which may spanmultiple mappings.

To address dynamic locking intervals (§3.1), it performs

a traversal and locking in a unified step. This operation

is internally used to implementMap operations, and it is

also externally invoked to synchronize address space op-

erations. A lock on an interval blocks all other operations

(except forQuery) on that interval.

(5) Unlock(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑): Releases lock for [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑].
(6) Swap(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑛𝑜𝑑𝑒𝑠): Atomically swaps all nodes that

(partially) overlap with [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] with 𝑛𝑜𝑑𝑒𝑠 . To ad-

dress the challenge of scalable interval updates (§3.2),

1135

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

New node Deleted After CAS Before CAS

pred new succ

(a) Node insertion.

pred succ

(b) Node deletion.

Figure 6. Update operations in Harris’s lock-free linked list.

this operation requires locking only [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑], not the
entire map. Additionally, the atomic swap ensures that

lock-free traversals remain linearizable.

4.2 Concurrent Interval Linked List
As a preliminary step, we design a concurrent interval linked

list that implements the aforementioned interface.

Harris’s lock-free linked list [35] supports lock-free traver-

sals and lock-free node insertions and deletions, as illustrated

in Fig. 6. Node insertion involves atomically updating the

predecessor node’s link (next pointer) using a CAS opera-

tion, ensuring that a concurrent reader can only see the state

before or after the insertion. Deletion involves two steps:

(1)Marking the deleting node’s link with a special bit flag

namedDELETED, letting it be skipped by readers, and (2)Un-
linking the node from the list by updating its predecessor

node’s link. Each step is performed using atomic instructions,

such as CAS and fetch-and-add. To ensure that operations

remain lock-free, other threads may help step (2) on behalf

of the deleting thread, rather than waiting for the deleting

thread to complete, which could otherwise cause a thread to

block. For lock-free traversals, a thread can continue travers-

ing over marked nodes.

Harris’s list is insufficient for address space designs be-

cause it lacks support for dynamic locking intervals (§3.1)

and atomic operations on multiple consecutive nodes (§3.2).

We address each of these challenges with node-granular in-
terval locking and read-copy-update, respectively.

Node-granular interval locking. This process combines

traversal and locking, as illustrated in Fig. 7a for the inter-

val [32, 38]. (1) It first identifies and locks the predecessor

with CAS.
3
To achieve this, we introduce a new LOCKED

flag for pointers, indicating that the node and its follow-

ing gap are locked. It is important to note that the initially

locked node may no longer be the predecessor if, for exam-

ple, a concurrent insertion occurred before the node was

locked. In such cases, the new predecessor is found by lock-

ing the next node and unlocking the previous one, repeating

this process if necessary. Locking the predecessor is crucial,

even if its interval does not overlap with the target interval,

to support Swap operations and address-space operations

(see §5.4). (2) The process then iteratively locks subsequent

nodes whose intervals or following gaps overlap with the

3
Here, the predecessor node is the last node preceding the target interval,
not a target node or key as in the original list.

target interval. During traversal, it unlinks any encountered

DELETED nodes.

Read-copy-update for Swap. After locking consecutive

nodes, we can atomically swap old nodes overlapping with
the target interval with new nodes in a read-copy-update fash-
ion as follows. (1)We prepare the new nodes (Fig. 7b). (2)We

update the predecessor’s link to the new nodes, thereby com-

mitting the swap and simultaneously unlocking the prede-

cessor by clearing the LOCKED flag (Fig. 7c). (3)We mark

the old nodes as INVALIDATED (Fig. 7d).

The INVALIDATED bit flag indicates that a node is stale

and should not be accessed anymore (except for theQuery
operation described below). Encountering this flag during

an update operation triggers a restart to prevent attempting

to insert or remove a node within the old nodes.

Query. A Query operation finds the node whose interval

contains the queried key with the original list’s lock-free tra-

versal. To ensure lock-freedom, LOCKED and INVALIDATED
nodes are treated as ordinary and it is allowed to lookup the

associated values.Query operations remain correct as long

as all updates are performed in a read-copy-update fashion.

Map. AMap operation associates an interval to a value as

follows (Fig. 7). (1) It performs interval locking on the target

interval. (2) It then invokes a Swap with the new nodes,

which include a node that associates theMap interval with

its corresponding value (unless the value is NULL), along
with any non-overlapping portions of the old nodes (Fig. 7b).

Alloc. An Alloc operation simultaneously allocates an inter-

val and maps it to a value. This is achieved by traversing the

list to find a gap of sufficient size and inserting a node using

CAS to claim the gap. A CAS failure can occur under the

following conditions, with corresponding responses: (1) If
the gap is LOCKED, we wait until the lock on the gap is

released. (2) If the gap is INVALIDATED, we restart from the

beginning. (3) If the gap is claimed by another thread, we

continue from the current point to find another suitable gap.

4.3 Concurrent Interval Skiplist
We extend the concurrent interval linked list with skip links.
The techniques for the linked list also apply to the skiplist in

largely the same way, so we focus only on the differences.

Background. A lock-free skiplist [49] is a leveled collection

of lock-free linked lists. Each node has a link at level-0 and

additional skip links at higher levels that act as shortcuts.

While all nodes are linked at base level-0, which serves as

the commit point for operations, each higher level contains

approximately half the nodes of the level below it. This en-

ables skiplists to achieve a probabilistic time complexity of

𝑂 (log 𝑛) for search, insertion, and deletion.

A concurrent skiplist operation generally replicates the

corresponding lock-free linked list operation at each level.

1136

Scalable Address Spaces using Concurrent Interval Skiplist SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

[10, 20] [30, 34] [36, 40] [60, 72]

Locked Invalidated New node

(a) Lock all related nodes. Node with interval [10, 20], which is

the predecessor, is also locked together.

[30, 31] [32, 38] [39, 40]

[10, 20] [30, 34] [36, 40] [60, 72]

(b) Prepare the new nodes we want to swap in.

[30, 31] [32, 38] [39, 40]

[10, 20] [30, 34] [36, 40] [60, 72]

(c) By updating the predecessor’s link, we swap old nodes with
new nodes in a read-copy-update fashion.

[30, 31] [32, 38] [39, 40]

[10, 20] [30, 34] [36, 40] [60, 72]

(d) Mark the old nodes as INVALIDATED.

Figure 7. An example of performing aMap operation for interval [32, 38] in a list-based interval map.

Locked Deleted Invalidated New node Unreachable Deleted

(a) Lock all related nodes. (b) Mark each old node’s skip link DELETED. (c) Unlink old nodes in levels except level-0.

(d) Swap the old nodes with new nodes as in
the interval linked list.

pred succ

(e) In levels 1 and higher, set up the new nodes’
skip links.

pred succ

Update by CAS

(f) Collectively insert multiple new nodes in
level-1 using a CAS.

Figure 8. An example of performing interval locking and a Swap in an interval skiplist.

Traversal proceeds downward from the top level, bookmark-

ing the predecessor and successor at each level. At each

subsequent level, traversal begins from the predecessor book-

marked at the previous level. Insertion is performed bottom-

up, inserting the node at each level up to its randomly de-

termined height, using the bookmarked predecessor and

successor to maintain consistency. Deletion, similarly to the

linked list operation, involves two steps: (1) A top-down

traversal marks the links and skip links of the node with

the DELETED flag at each level. (2) A subsequent top-down

traversal unlinks the node at each level.

Node-granular interval locking. We perform node locking

only at level-0, as illustrated in Fig. 8a. This is sufficient to

ensure exclusive permission for the node and the following

gap because locking the level-0 link prevents concurrent

insertions and deletions. A node’s deletion is committed by

marking its level-0 link with theDELETED flag, and insertion

is performed by updating its predecessor’s level-0 link.

Read-copy-update for Swap. It is similar to the interval

linked list, but with two additional steps. (1) We decrement

the height of the old nodes to 1 (Fig. 8b, Fig. 8c). (2)We apply

the swap algorithm (§4.2) developed for linked lists, which

is possible as the relevant portion is effectively a linked list

(Fig. 8d). (3)We increment the heights of the new nodes up
to a randomly decided height, to maintain the probabilistic

time complexity of 𝑂 (log 𝑛) (Fig. 8e, Fig. 8f).
Height adjustments for multiple nodes are performed col-

lectively to avoid repeated traversals, as follows.

To collectively decrement the heights of multiple nodes,

we conceptually remove them from all levels except level-0.

This involves two top-down traversals, excluding level-0:

(1) The first traversal is top-down and is used to mark the

skip links of each node with the DELETED flag (Fig. 8b).

(2) The second traversal is top-down again and is used to

unlink the nodes from the lists (Fig. 8c).

To collectively increment the heights of multiple nodes, we

conceptually insert them at all levels (except level-0, where

1137

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

GR GW LR LW
GR ✓ ✗ ✓ ✗

GW ✗ ✗ ✗ ✗

LR ✓ ✗ ✓ ▲

LW ✗ ✗ ▲ ▲

Figure 9. Mutual exclusion rules for various locking modes

in our new distributed lock. ✓(✗): Can(not) coexist. ▲: Can

coexist only if they lock different cores.

they are already in). This involves a top-down traversal and

a following bottom-up traversal, excluding level-0: (1) The
first traversal is top-down and is used to bookmark the pre-

decessor and successor at each level.
4
We also set up the skip

links of the new nodes to point to the next new node or to
the successor (Fig. 8e). (2) The second traversal is bottom-up

and is used to insert the new nodes at all levels (Fig. 8f). At

each level, we use a single CAS to atomically update the

predecessor’s skip link from the successor to the first new

node in that level, inserting multiple nodes in a level at once.
In the rare event of a CAS failure, we safely abort or retry

from the beginning.

5 Address Space with Parallel Operations
Using our new interval skiplist (§4), we parallelize address

space operations. In §5.1, we introduce a new distributed

lock to optimize operations on the entire address space (§3.3).

In §5.2, 5.3 and 5.4, we design the Fault, Alloc, andModify
operations, respectively, while addressing the challenges

related to the Alloc strategy (§3.4) and resource limits (§3.5).

5.1 Two-Level Locking for Hybrid Granularity
As we discussed in §3.3, address space management requires

both global locking, which locks the entire address space,

and local locking, which locks only a specific interval.

To address this, we propose a new locking scheme with

hybrid-granular modes: global read (GR), global write (GW),

local read (LR), and local write (LW). A naive implementa-

tion would lock all intervals in the address map for global

modes. However, this introduces substantial overhead, es-

pecially in applications that manage thousands to hundreds

of thousands of intervals. To achieve high performance, we

propose a general two-level locking strategy based on a new

hybrid-granular lock.

We first design this hybrid-granular lock using per-core
read-write locks. (1) For GR/GW, we read/write-acquire all

per-core locks.
5 (2) For LR/LW, we read/write-acquire the

running core’s lock. Fig. 9 illustrates the mutual exclusion

4
Here, the predecessor node is the last node preceding the target interval,

and the successor node is the first node succeeding the target interval.

5
Our approach differs from the traditional use of distributed locks [16],

which only supports global locking and where global read locking typically

involves acquiring only a single lock in read mode.

rules. Notably, this lock correctly implements global locking

while significantly reducing the number of lock acquisitions

compared to the naive approach.

Using this hybrid-granular lock, we protect the address

space as follows. For GR/GW, only the per-core locks are

acquired using the samemode. For LR/LW, a core acquires its

per-core lock using the same mode as well as the necessary

interval lock within the interval skiplist. This allows opera-

tions on non-overlapping intervals to proceed in parallel.

One potential drawback of this approach is the overhead

of global locking when the number of cores is large. This can

be mitigated by grouping cores and assigning shared locks

to each group instead of dedicating one lock per core.

Using this two-level locking scheme for address spaces, we

parallelize operations by attempting themwith progressively

stronger locking modes. For each operation, we first attempt

the operation without acquiring address space locks, if pos-

sible. If this fails, we attempt the operation while holding

the per-core lock in LR/LW mode and the corresponding in-

terval lock. Finally, in rare cases where this also fails, we fall

back to the original method while holding the per-core locks

in GR/GW mode. Such cases primarily involve file-backed

memory associated with untested file systems, which may

rely heavily on specific assumptions about the address space

implementation. To ensure correctness, our design is enabled

only for file systems for which we are confident that no such

dependencies exist. We note, however, that no changes are

necessary for most file systems, as such dependencies are

unlikely. We now describe each possible step of the different

address space operations.

5.2 Fault
Faults are handled in three possible steps: without address

space locking, under LR locking, and under GR locking.

Without address space locking. Initially, we attempt to

handle the fault without acquiring address space locks. Our

approach is inspired by RCUVM [13] and previous Linux

attempts [42, 43], but includes the following key improve-

ments: (1) Unlike RCUVM, we support modern techniques

such as transparent huge pages (THP). (2) Unlike previous
Linux attempts [42, 43], we only abort on overlapping address
space updates, rather than on any update.

Under LR locking. The above stage can fail for the follow-

ing reasons. (1) Page table allocation: faults requiring new

page tables cannot be handled due to potential races. The

fault handler cannot cannot tell whether a page table is miss-

ing or has been temporarily cleared, for example, due to a

huge page merge. A page table allocation is necessary for

every 2MiB region of address space. (2) Metadata structure
update: some faults require updating the metadata structure

and thus require proper synchronization. In particular, on

Linux, a first-time fault on an anonymous VMA requires

1138

Scalable Address Spaces using Concurrent Interval Skiplist SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Arena 3Arena 2Arena 1head

Figure 10. Inserting a node in a core’s private arena may

also involve updates in other arenas.

initialization. Assuming each mmap() creates a new VMA,

this can occur as frequently as the number of mmap() calls.
(3) File-backed memory: synchronization with the file system

is needed for file-backed memory.

In such cases, we attempt to handle the fault after acquir-

ing the per-core lock in LR mode and locking the interval

in the interval skiplist, preventing the interval from being

updated or deleted. This allows parallel execution with other

operations on different intervals.

Compared to RCUVM and previous Linux patches [42, 43],

this new step significantly helps improving scalability by not

reverting to global locking. It is crucial given the frequent

occurrence of the failures.

Under GR locking. If the above stage also fails, we revert

to the original method after acquiring the per-core locks in

GR mode. This is rare and occurs primarily with file-backed

memory involving untested file systems (see §6).

5.3 Alloc
Allocation is implemented in two possible steps: first under

LW locking, and then under GW locking.

Under LW locking. We insert a node that represents the

allocated interval into the interval skiplist. Unlike in original

Linux, all necessary preparations—such as setting up the

metadata structure—are completed before the insertion to

avoid updates afterward. Once prepared, the address space

Alloc operation is committed by inserting the node using the

interval skiplist Alloc operation (§4.2).

While helpful, this approach does not fully resolve the

scalability challenges associated with theAlloc strategy (§3.4)
and resource limits (§3.5), which we will address shortly.

Under GW locking. When the process encounters an

untested file system, we revert to the original method af-

ter acquiring the per-core locks in GW mode.

Optimizing Alloc strategy (§3.4). To mitigate contention,

we introduce per-core arenas by partitioning a small por-

tion of the address space into 64-GiB arenas. Each core first

searches for free space within its own per-core arena, falling

back to the shared, non-arena region only when its private

arena is full. Each arena is assigned to a CPU core (or hard-

ware thread), unless the count exceeds a predefined limit

(128 in our implementation). Even with 128 arenas, this ac-

counts for less than 4% of the 256-TiB virtual address space

available on x86-64 systems.

Arena 1 Arena 2

NIL

head separator separator
Arena 3

NIL

intra
arena

inter
arena

Figure 11. Separator nodes partition arenas. Upper levels

support traversal between separators, while lower levels

primarily handle traversal within the same arena.

To further reduce contention, we isolate the arenas within

the interval skiplist. As shown in Fig. 10, in a typical skiplist,

inserting a new node (blue) in a core’s private arena may still

require updating nodes in other cores’ arenas (green nodes

and arrows)—a known scalability challenge in skiplists [14].

To address this, we introduce the design shown in Fig. 11:

(1) Each arena is partitioned using dedicated separator nodes.
(2) Levels are organized hierarchically: separator nodes have
a height no smaller than a predefined threshold, whereas

non-separator nodes typically have smaller heights. This

design assigns distinct roles to different levels: upper levels

support traversal between separators, while lower levels

typically handle traversal within a single arena.

Each arena also keeps a hint to speed up Alloc, typically
pointing to the last successful allocation. After an munmap(),
the hint shifts backward to favor reusing unmapped regions.

Optimizing resource limits (§3.5). We design a scalable

counter that uses an adaptive strategy. Similar to Linux’s

percpu_counter, we buffer updates in per-core counters

and flush them to the global counter once they reach a pre-

defined batch size.

However, after a flush, we determine whether continued

use of per-core counters is appropriate. Specifically, if the

remaining margin between the global counter and its limit

is less than the batch size multiplied by the number of cores,

the core ceases using per-core counters and transitions to

direct updates of the global counter.

By selecting an appropriate batch size, we achieve both

scalability and strict limit enforcement. In our implementa-

tion, the batch size is typically set to one-sixteenth of the

global limit divided by the number of cores. As a result, the

transition to direct global updates begins only after the global

counter reaches 93.75% of the limit.

5.4 Modify
Modify operations, such as an overwriting mmap(), munmap(),
mprotect(), mremap(), or madvise() operation, are imple-

mented in two possible steps: first under LW locking, and

then under GW locking.

Under LW locking. This stage closely mirrors the original

approach, with one key difference: instead of locking the en-

tire address space, we acquire the per-core lock in LW mode

1139

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

along with the interval lock. This allows parallel execution

with other operations.

This modification is correct because our interval skiplist

effectively handles the dynamic locking intervals discussed

in §3.1. By unifying address space mapping and synchro-

nization, we eliminate the aforementioned race. Moreover,

interval locking precisely characterizes the range required

for aModify operation: a metadata structure or gap is locked

if its interval overlaps with that of theModify.

Under GW locking. When the process encounters untested

file systems or performsModify operations that have not yet
been adapted to our new design, we revert to the original

method after acquiring the per-core locks in GW mode.

6 Implementation
We implemented our address space design on Linux 6.8.0

with about 10K lines of code. Our implementation supports

POSIX and is transparent to applications, requiring no changes

to the applications. Our first step of fault handling (§5.2) is

based on a prior work [43].

Our implementation successfully passes the Linux Test

Project (version 20240524) [52], producing results identical

to those of Linux 6.8.0, except for certain tests marked as

“broken”. These tests rely on kernel-specific assumptions (e.g.,
address space layout) that are invalid in our implementation,

leading to automatic abortion. We also performed additional

stress tests using the kernel address sanitizer (KASAN).

Our implementation supports both anonymous and file-

backed memory, tested with ramfs, tmpfs, and ext4. All criti-
cal operations—such as page fault, mmap, munmap, mprotect,
mremap, and common madvise flags—are parallelized. Only
a few operations not listed above, such as madvise with

flags other than MADV_FREE or MADV_DONTNEED, still rely on

global locking (§5.1), but we believe our approach can be

easily extended to these cases.

7 Evaluation
We compare the following kernels: (1) Linux (version 6.8.0),

(2) IntervalVM (Linux 6.8.0 with our design applied), and

(3) RadixVM. For Linux and IntervalVM, we use Ubuntu 24.04

with its default configuration. For RadixVM, we disable its

per-core page table and core-tracking shootdown features for

a fair comparison. These features are not present in Linux and

are largely orthogonal to our address space modifications.

Furthermore, they introduce significant bugs that prevent us

from running macrobenchmarks reliably. Additionally, we

always pin each thread when comparing with RadixVM, as

RadixVM otherwise fails to scale.

To analyze the impact of individual components, we evalu-

ate the interval map data structures used as the address map

(§7.1), the latency and throughput of address space opera-

tions (§7.2), and the performance of real-world applications

(§7.3). We repeat each benchmark 20 times and report the

average. The only exception is LMbench, which exhibits high

variance; therefore, we run it 40 times.

We use a machine with dual-socket Intel Xeon Gold 6248R

(3.0GHz, 48 cores, 96 threads), 384GiB of DRAM (twelve

32GiB modules), and a 4TB WD BLACK SN850X SSD. Un-

less otherwise specified, we vary the number of threads up

to twice the physical core count. This includes the hyper-

threading range, where thread count exceeds the core count

and causes contention. We highlight this range with a red

background in the plots.

7.1 Data Structure Microbenchmark
We compare our interval skiplist with the Linux maple tree

in user space. These data structures serve as the address

map in IntervalVM and Linux, respectively. We evaluated

the single-threaded latency and multi-threaded throughput

ofQuery, Alloc, andMap (where 𝑣𝑎𝑙𝑢𝑒 isNULL), where each
corresponds to the performance of page faults, mmap(), and
munmap(), respectively. To ensure that each operation al-

ways works on non-overlapping areas, we use per-thread

arenas (cf. §5.3). Each thread either repeatedly performsAlloc
to insert an interval into its arena, or usesQuery or Map to

look up or remove an interval from its arena. We use jemal-

loc [22] to prevent malloc() from becoming the bottleneck,

and use userspace RCU [20]. Fig. 12 shows the results.

The interval skiplist exhibits lower performance forQuery
operations (latency +35%, peak throughput 0.77×). This is
because themaple tree, as a B-tree, employs a large branching

factor of 10 to 16, allowing it to store multiple key-value

pairs within a single node. This reduces the number of nodes

accessed during traversal and improves cache-line efficiency.

In contrast, the interval skiplist significantly outperforms

the maple tree in Alloc (latency +4%, peak throughput 22.9×)
andMap (latency −49%, peak throughput 5.28×). In terms of

throughput, the maple tree does not scale at all, as it relies

on a global lock to synchronize updates. In terms of latency,

Map is significantly faster with the interval skiplist because,

in the maple tree, removing an entry within a node often

requires updates to multiple nodes. Also, updating a node

in a read-copy-update manner requires copying the entire

node, which is costly since a maple tree node stores multiple

key-value pairs.

These improvements inAlloc andMap throughput are par-
ticularly important today. In Linux 6.8.0, a Fault no longer
acquires the mmap_lock (§2). Consequently, address space

operations such as Alloc and Modify have become the pri-

mary performance bottlenecks for applications (§1).

7.2 Address Space Microbenchmark
LMbench. We evaluate the performance impact of our de-

sign using LMbench [46], which evaluates the latency of

various kernel operations. We run LMbench on Linux and
IntervalVM. Fig. 13 shows the results.

1140

Scalable Address Spaces using Concurrent Interval Skiplist SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Query Alloc Map0.0

0.2

0.4

0.6

0.8

La
te

nc
y

(μ
s)

Interval Skiplist
Maple Tree

(a) Latency

0 20 40 60 80 10
0

Threads

200

400

600

800

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Query

Interval Skiplist
Maple Tree

0 20 40 60 80 10
0

Threads

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Alloc

0 20 40 60 80 10
0

Threads

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Map

(b) Throughput
Figure 12. Performance of interval skiplist and maple tree.

Test Linux (𝜇s) IntervalVM (𝜇s) Overhead
null syscall 0.0938 0.0933 -0.533%

stat 0.764 0.757 -0.981%

open+close 1.39 1.37 -1.40%

pipe 10.4 10.9 4.09%

fork+exit 271 330 21.6%

page fault 0.200 0.206 3.20%

mmap+fault+munmap 6675 6890 3.22%

file create 7.42 7.32 -1.36%

file delete 4.12 4.16 1.04%

ctxsw 2p/0k 3.55 3.48 -1.98%

Figure 13. LMbench results (lower is better).

IntervalVM IntervalVM w/o Arena Linux

IntervalVM w/o Per-core Stats RadixVM

0 20 40 60 80 10
0

Threads

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Alloc

0 20 40 60 80 10
0

Threads

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (K

 o
p/

s)

Alloc + Fault + Modify

Figure 14. Throughput of each microbenchmark.

Our design incurs some overhead for process manage-

ment functions and address space operations. The latency

of fork+exit increases due to a longer traversal time. Each

fork and exit traverses the entire address map, visiting

each VMA to copy or free it. Traversals are generally faster

with a maple tree, since each node stores multiple key-value

pairs and therefore fewer nodes need to be visited. Mean-

while, page fault latency increases slightly in IntervalVM
due to the longer latency of Query operations. As a result,

the latency of mmap+fault+munmap and pipe also increases

slightly due to frequent page faults.

However, we believe such overhead—mostly marginal—is

justified by the significant improvements in multithreaded

performance, as demonstrated below.

Throughput. We evaluated the multithreaded throughput

of address space operations using two microbenchmarks.

(1) Alloc: Each thread repeatedly allocates memory using

mmap(). This measures Alloc throughput, which is critical

for applications that heavily use malloc(), particularly in

Linux 6.8.0. (2) Alloc + Fault +Modify: Each thread repeats a

sequence of operations: mmap() a 2MiB area, fault each page,

and then munmap() it. This simulates the typical usage cy-

cle of mmap(), particularly in file-backed memory scenarios

common in web servers and standard libraries.

For the Alloc benchmark, we also conducted a breakdown

analysis by selectively disabling arenas and per-core statis-

tics (§5.3) to assess their impact. Fig. 14 shows the results.

Overall, IntervalVM significantly outperforms Linux. In
terms of peak throughput, the speedup is 13.1× (Alloc) and
10.4× (Alloc + Fault +Modify).

IntervalVM outperforms RadixVM as well, particularly in

(Alloc + Fault + Modify). In terms of peak performance, the

speedup is 1.07× (Alloc) and 5.22× (Alloc + Fault + Modify).
Notably, around 48 threads, RadixVM temporarily outper-

forms IntervalVM due to a temporary drop in IntervalVM’s

scalability. This drop stems from NUMA-related overhead in

Linux, which is also evident in our user-space benchmarks

(Fig. 12b) but does not appear in additional evaluations on

single-socket machines, as shown in Fig. 21. Without this

overhead, IntervalVM consistently outperforms RadixVM
across both benchmarks and all thread counts.

IntervalVM generally continues to scale with the number

of available cores. In contrast, Linux does not scale, and

RadixVM exhibits weak scaling in Alloc + Fault +Modify.
Our breakdown analysis reveals that Alloc performance

scales only when both arenas and per-core statistics are

applied. Unlike IntervalVM, both IntervalVM w/o Arenas
and IntervalVM w/o Per-core Stats fail to scale effectively,

demonstrating that Alloc is truly bottlenecked by multiple

factors, not just the address space lock.

7.3 Address Space Macrobenchmark
For Apache, LevelDB, Metis, and Psearchy, which are VM-

intensive applications, IntervalVM demonstrates significant

speedups and improved scalability compared to both Linux

1141

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

IntervalVM IntervalVM w/o Alloc Linux

IntervalVM w/o Fault IntervalVM w/o Modify RadixVM

0 20 40 60 80 10
0

Threads

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut
 (K

 re
q/

s)

(a) Apache (single process).

0 20 40 60 80 10
0

Threads

100

200

300

400

500

Th
ro

ug
hp

ut
 (K

op
/s

)

(b) LevelDB

0 20 40 60 80 10
0

Threads

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Th
ro

ug
hp

ut
 (G

iB
/s

)

(c)Metis

0 20 40 60 80 10
0

Threads

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (j

ob
s/

ho
ur

)

(d) Psearchy

Figure 15. Multithreaded throughput of Apache (single pro-

cess), LevelDB, Metis, and Psearchy.

Kernel (K req/s)

Linux 97.0

IntervalVM w/o Fault 202.4

IntervalVM w/o Alloc 150.0

IntervalVM w/o Modify 174.6

IntervalVM 309.0

Figure 16. Apache throughput under default configuration.

and RadixVM. IntervalVM tends to scale well with the num-

ber of cores, whereas Linux stops scaling earlier, andRadixVM
exhibits less pronounced scaling. Also, single-core perfor-

mance of IntervalVM is nearly identical to that of Linux.6

We evaluate RadixVM only with Metis, as it does not support

the other benchmarks.

In addition, results from the PARSEC [7, 8] comprehensive

benchmark suite demonstrates the benefits of our design for

VM-intensive workloads, with minimal impact on non-VM-

intensive workloads.

Apache. It serves HTTP requests by invoking mmap() on the
requested file, faulting each page, and invoking munmap() on

6
When IntervalVM was slower than Linux, the difference was at most 5%.

the region after serving the request. This follows a pattern

similar to our Alloc + Fault +Modify microbenchmark.

We use Apache’s default mpm_event module and evaluate

two configurations: (1) a single server with a varying number

of threads, to evaluate the throughput of a single server

process, and (2) the default configuration, which creates a

small number of server processes (3 to 12), each spawning 25

threads. In both cases, Apache hosts a 64KiB static content

file, and we use Wrk [32] to create HTTP requests using

all hardware threads while maintaining 100 connections,

which results in the highest throughput in all kernels. We

also perform a breakdown analysis by selectively disabling

our new designs for Fault, Alloc, or Modify operations—

these then always fall back to GR or GW locking (see §5)—to

evaluate the individual impact of each component. Fig. 15a

shows the results for configuration (1), and Fig. 16 shows

the results for configuration (2).
IntervalVM outperforms Linux by 4.53× for configuration

(1) and 3.19× for configuration (2). The speedup is more

pronounced in (1), which uses a single process, causing all

threads to contend on the same mmap_lock in Linux.
Our breakdown analysis highlights the necessity of sup-

porting parallel execution for all critical address space oper-

ations (Fault, Alloc, and Modify) in order to scale real-world

applications that exercise these. Compared to IntervalVM, all

variations of IntervalVM that disable Fault, Alloc, orModify
exhibit limited scalability.

LevelDB. It is a key-value store. For our evaluation, we use
its db_bench utility. First, we use db_bench’s fillrandom
to populate the database with 2M key-value pairs, each

with a value size of 4KiB, while keeping all other settings

at their defaults. Next, we evaluate query performance us-

ing db_bench’s readrandom with multiple threads. Each

thread reads a database file using mmap(), performs key-

value lookups, and later invokes munmap() once the file is

no longer needed. Fig. 15b presents the results.

IntervalVM outperforms Linux by 4.49×. On Linux, threads
contend for the mmap_lock, particularly on modern SSDs

with low I/O latency. In contrast, under IntervalVM, con-

tention on the mmap_lock is eliminated; instead, threads

contend on LevelDB’s global database lock [3].

Metis. It is a MapReduce framework optimized for multi-

core systems. We use its wrmem benchmark, which computes

the inverted index for a random input text with a 4GiB in-

put size. This benchmark invokes malloc() and fault about

10
5
anonymous memory pages during the map, reduce, and

merge phases. As a result, its performance is bottlenecked

by the Alloc throughput in Linux [10].
For consistency, we use RadixVM’s default malloc() im-

plementation across all kernels, as it is the only option in

RadixVM and shows higher performance than the default

glibc malloc(). Fig. 15c shows the results.

1142

Scalable Address Spaces using Concurrent Interval Skiplist SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

bo
dy

tra
ck

st
re

am
clu

st
er

x2
64

ca
nn

ea
l

fre
qm

in
e

bl
ac

ks
ch

ol
es

fa
ce

sim
flu

id
an

im
at

e
fe

rre
t

ra
yt

ra
ce

sw
ap

tio
ns vip
s

de
du

p

0.00
0.25
0.50
0.75
1.00
1.25

No
rm

al
ize

d
Th

ro
ug

hp
ut

0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.16

1.32

Figure 17. Normalized throughput of IntervalVM relative

to Linux across PARSEC benchmarks (higher is better).

IntervalVM outperforms Linux by 1.47× and RadixVM by

1.18×. IntervalVM also demonstrates the highest scalability.

While IntervalVM and RadixVM scale up to the number of

cores, Linux stops scaling earlier.

Psearchy. It is a parallel version of Searchy [44, 51] and per-

forms parallel text indexing. It intensively uses both anony-

mous memory and file-backed memory, by allocating per-

thread hash tables using malloc() and reading files using a

few ten thousands of mmap()s and munmap()s in glibc’s stdio
library. As a result, both Alloc and Alloc + Fault + Modify
throughput are critical performance factors.

Following the original setup [10], all input files are buffered

in the buffer cache, and all output files are written to tmpfs
to eliminate file I/O bottlenecks. Fig. 15d shows the results.

IntervalVM outperforms Linux by 1.27×. Notably, in both

IntervalVM and Linux, throughput declines after reaching its
peak—an expected behavior in Psearchy due to high cache

miss rates at higher thread counts [10].

PARSEC. It is a comprehensive benchmark suite that evalu-

ates multithreaded performance across 13 diverse workloads.

We run each benchmark with 48 threads, as performance

does not scale beyond the number of available cores, except

for facesim and fluidanimate, which require the number

of threads to be a power of two; for these, we use 32 threads.

Also, we use the native data set whenever available. An

exception is dedup, for which deduplication rarely occurs

with the native data set;
7
in this case, we use simlarge

instead. Fig. 17 shows the results.

IntervalVM outperforms Linux on VM-intensive work-

loads (1.32× on dedup and 1.16× on vips). dedup uses mmap()
and mremap() to manage numerous memory chunks while

processing input data and maintaining the hash table, while

vips repeatedly uses mmap() to access large images. For oth-

ers, performance differences are within 2%.

7
The ISO file for Fedora 6, which is already well compressed.

8 Related Work
We discuss prior approaches to parallelizing address spaces

and kernels in general.

8.1 Fault Operations in Parallel with Updates
RCUVM [13] proposed an approach similar to per-VMA lock-

ing (§2.2) in Linux before its introduction. However, RCUVM

differs with Linux 6.8.0 in three ways. (1) It uses a bonsai
tree as the RCU-safe address map. (2) It supports only anony-
mous memory. (3) It synchronizes Fault operations with
overlapping Alloc andModify operations using a speculative
approach. Specifically, before a Fault operation updates the

page table, it double-checks the VMA. If no incompatible

change has occured, it updates the page table and completes

the Fault. Otherwise, the speculative attempt is aborted, and

the Fault is restarted after read-locking the mmap_lock.
Several Linux kernel patches [21, 42, 43, 57] also propose

speculative approaches, but use sequence counters [28] in-

stead of double-checking the VMA.

However, these approaches share the same limitations

with Linux 6.8.0. They do not address the scalability chal-

lenges (§3), as they still serialize Alloc andModify operations.

8.2 RadixVM
RadixVM [14], built on the sv6 [15] POSIX-like research ker-

nel, enables parallel execution of non-overlapping operations.

At its core is a concurrent radix tree that serves as the address

map, managing metadata and locks at page granularity. This

radix tree uses a large branching factor (128–512), allowing

it to efficiently cover a wide address space. Address space

operations are performed after locking the corresponding

entries in the radix tree, thereby ensuring consistency.

However, RadixVM does not address the challenges in §3.3

and §3.5, and provides impractical or incomplete solutions

for the other challenges.

Dynamic locking intervals (§3.1). RadixVM sidesteps it

by managing metadata and locks at page granularity and by

avoiding the freeing of empty page tables. Since a page is

the smallest unit in address space management, this design

eliminates the need to share metadata structures, thereby

removing potential contention.

However, this approach incurs significant memory and

locking overhead [38]. Each 4KiB faulted page requires its

own metadata structure and lock, and the problem is exac-

erbated in real-world kernels such as Linux, which uses a

significantly larger metadata structure (VMA) of at least 128

bytes. Furthermore, not freeing empty page tables can lead to

memory waste on the order of hundreds of GiB [56], making

this approach unacceptable in real-world kernels.

Interval updates (§3.2). While RadixVM’s radix tree sup-

ports parallel updates, it is not well-suited for RCU (see §3.2).

Particularly, its high branching factor (128–512), which is

1143

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

required to cover a large address space at page granularity,

greatly increases the cost of RCU updates.

Alloc strategy (§3.4). RadixVM employs a simple heuristic

that is critical for performance. RadixVM maintains a per-

thread unmapped_hint, similar to our hint mechanism in

§5.3, but does not reuse munmap()ed regions and jumps by

4GiB whenever contention is detected.

This strategy quickly exhausts the address space. In our

experiment on a 64-bit machine where multiple threads re-

peatedly mmap() and munmap() 32MiB of space, the 2
47
-byte

space designated for mmap()s was exhausted within 90 sec-

onds, heavily disrupting server applications.

8.3 Range Locking
Prior approaches employing range locking for address spaces

[11, 38, 41, 43] aim to improve scalability but largely fail to

address most of the challenges outlined in §3. An exception

is operations on the entire data structure (§3.3), which can

be efficiently supported by locking the entire range.

Bueso [11]’s approach did not actually improve scalability

because it always locks the entire address range, effectively

making it equivalent to coarse-grained locking.

Lespinasse [41, 43] supported dynamic locking intervals

(§3.1) by simply protecting the address map with a coarse-

grained lock, introducing a significant performance bottle-

neck. Also, these works do not address the other challenges.

Kogan et al. [38] supported dynamic locking intervals

(§3.1) using a speculative approach, but its applicability is

limited. In their method, a thread initially locks the antici-

pated range. If it turns out that a larger range is required, the

thread restarts after locking the entire address range. How-

ever, this technique could only be applied to mprotect()
operations that do not cause a tree rotation in the address

map. Also, they did not address the other challenges.

8.4 Replicating Data Structures
Unlike ours and the work discussed above, the following

kernels avoid sharing a global data structure by replicating

objects. This strategy, however, does not address the chal-

lenges in §3, is hard to apply in real-worldmonolithic kernels,

and is inherently inefficient for coordinating updates.

In Tornado [29] and K42 [39], which follow a microkernel

design, each core maintains its own Region list, which is

protected by a lock and serves a role similar to that of an

address map. Such replication helps the performance of read

operations, such as Fault, since a core can simply access its

own copy. However, it degrades the performance of update

operations, such as Modify, when updating multiple copies.

Barrelfish [4] and fos [54] also avoid sharing data struc-

tures by relying on message passing. However, their ap-

proach introduces the same drawback: updates become sig-

nificantly more expensive.

Corey [9] lets applications explicitly manage address inter-

vals as private or shared. However, this requires application

changes to use the new system interface, and Corey’s imple-

mentation also relies on replicating data structures, resulting

in the same problem of degraded update performance.

8.5 Locks with Adaptive Granularity
Uhlig [53] proposes a locking scheme that can switch be-

tween (1) a coarse-grained lock and (2) fine-grained locks

depending on the level of contention. However, this scheme

cannot effectively address the challenge in §3.3 because (1) it
associates a lock with each fine-grained object rather than

using per-core locks, and (2) when performing a global lock

operation, it must acquire all fine-grained locks if concurrent

local locking either exists or may occur.

9 Conclusion
We present the first practical address space design that par-

allelizes critical operations, addressing long-standing scala-

bility challenges. Our design significantly accelerates VM-

intensive, multi-threaded applications.

Our work opens several promising directions for future

research. (1)We are investigating further applications of our

concurrent interval skiplist, including kernel data structures

protected by coarse-grained locks and user applications that

require an interval map. (2) We are investigating further

bottlenecks in kernels that were previously hidden by the

address space lock. (3) We are exploring new application de-

signs that leverage the parallelized address space operations

to improve performance. (4)Most importantly, we believe

this work offers insights into applying more fine-grained

concurrency within the kernel by identifying common chal-

lenges and presenting general solutions.

Acknowledgments
We thank our shepherd, Michael Stumm, the OSDI’25 and

SOSP’25 program committees, as well as Jaehwang Jung and

Jeonghyeon Kim for their valuable feedback. This work was

supported by the Institute for Information & Communica-

tions Technology Planning & Evaluation (IITP) grant funded

by the Korea government (MSIT) partly under the project

(No. RS-2024-00459026, Energy-Aware Operating System

for Disaggregated System, 60%), partly under the project

(No. RS-2024-00396013, DRAM PIM Hardware Architecture

for LLM Inference Processing with Efficient Memory Man-

agement and Parallelization Techniques, 20%), partly under

the Information Technology Research Center (ITRC) support

program (No. IITP-2025-RS-2020-II201795, 10%), partly under

the Graduate School of Artificial Intelligence Semiconduc-

tor (No. IITP-2025-RS-2023-00256472, 5%), and partly under

the project (No. RS-2024-00395134, DPU-Centric Datacenter

Architecture for Next-Generation AI Devices, 5%).

1144

Scalable Address Spaces using Concurrent Interval Skiplist SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

References
[1] Georgy M Adelson-Velsky and Evgenii Mikhailovich Landis. 1962. An

algorithm for the organization of information. In Proceedings of the
USSR Academy of Sciences, Vol. 146. 263–266.

[2] Apache. 2025. Apache HTTP server project. https://httpd.apache.org
[3] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis, and Igor

Zablotchi. 2017. FloDB: Unlocking memory in persistent key-value

stores. In Proceedings of the 12th European Conference on Computer
Systems (Belgrade, Serbia) (EuroSys ’17). Association for Computing

Machinery, New York, NY, USA, 80–94. doi:10.1145/3064176.3064193
[4] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and

Akhilesh Singhania. 2009. The Multikernel: A new OS architecture for

scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (Big Sky, Montana, USA)

(SOSP ’09). Association for Computing Machinery, New York, NY, USA,

29–44. doi:10.1145/1629575.1629579
[5] R. Bayer and E. McCreight. 1970. Organization and maintenance of

large ordered indices. In Proceedings of the 1970 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control (Houston,
Texas) (SIGFIDET ’70). Association for Computing Machinery, New

York, NY, USA, 107–141. doi:10.1145/1734663.1734671
[6] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.

Wilson. 2000. Hoard: A scalablememory allocator formultithreaded ap-

plications. In Proceedings of the 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Cam-

bridge, Massachusetts, USA) (ASPLOS IX). Association for Computing

Machinery, New York, NY, USA, 117–128. doi:10.1145/378993.379232
[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.

The PARSEC benchmark suite: Characterization and architectural

implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (Toronto, Ontario,
Canada) (PACT ’08). Association for Computing Machinery, New York,

NY, USA, 72–81. doi:10.1145/1454115.1454128
[8] Christian Bienia and Kai Li. 2009. PARSEC 2.0: A new benchmark suite

for chip-multiprocessors. In Proceedings of the 5th Annual Workshop
on Modeling, Benchmarking and Simulation (MoBS). 1–9.

[9] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans

Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-

hua Dai, Yang Zhang, and Zheng Zhang. 2008. Corey: An operating sys-

tem for many cores. In Proceedings of the 8th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 08). USENIX Associ-

ation, San Diego, CA, 43–57. https://www.usenix.org/conference/osdi-
08/corey-operating-system-many-cores

[10] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey

Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.

2010. An analysis of Linux scalability to many cores. In Pro-
ceedings of the 9th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 10). USENIX Association, Vancouver,

BC, 1–16. https://www.usenix.org/conference/osdi10/analysis-linux-
scalability-many-cores

[11] Davidlohr Bueso. 2018. mm: Towards parallel address space operations.

https://lwn.net/Articles/746537
[12] Elasticsearch B.V. 2025. Elasticsearch. https://www.elastic.co/

elasticsearch
[13] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012.

Scalable address spaces using RCU balanced trees. In Proceedings of the
17th International Conference on Architectural Support for Programming
Languages and Operating Systems (London, England, UK) (ASPLOS
XVII). Association for Computing Machinery, New York, NY, USA,

199–210. doi:10.1145/2150976.2150998
[14] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2013.

RadixVM: Scalable address spaces for multithreaded applications. In

Proceedings of the 8th ACM European Conference on Computer Systems

(Prague, Czech Republic) (EuroSys ’13). Association for Computing

Machinery, New York, NY, USA, 211–224. doi:10.1145/2465351.2465373
[15] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T.

Morris, and Eddie Kohler. 2015. The Scalable Commutativity Rule:

Designing Scalable Software for Multicore Processors. ACM Trans.
Comput. Syst. 32, 4 (Jan. 2015), 1–47. doi:10.1145/2699681

[16] Jonathan Corbet. 2010. Big reader locks. https://lwn.net/Articles/
378911

[17] Jonathan Corbet. 2017. Range reader/writer locks for the kernel. https:
//lwn.net/Articles/724502

[18] Jonathan Corbet. 2019. How to get rid of mmap_sem. https://lwn.net/
Articles/787629

[19] Jonathan Corbet. 2022. Concurrent page-fault handling with per-VMA

locks. https://lwn.net/Articles/906852
[20] Mathieu Desnoyers and Paul E. McKenney. 2025. Userspace RCU.

https://liburcu.org
[21] Laurent Dufour. 2017. Speculative page faults. https://lwn.net/Articles/

725607
[22] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for

FreeBSD. In Proceedings of the BSDCan Conference (Ottawa, Canada).
1–14.

[23] Linux Foundation. 2025. drivers/gpu/drm/drm_mm.c.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/drivers/gpu/drm/drm_mm.c

[24] Linux Foundation. 2025. drivers/gpu/drm/nouveau/nouveau_uvmm.c.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
tree/drivers/gpu/drm/nouveau/nouveau_uvmm.c

[25] Linux Foundation. 2025. fs/xfs/scrub/bitmap.c. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/
xfs/scrub/bitmap.c

[26] Linux Foundation. 2025. kernel/bpf/range_tree.c. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
kernel/bpf/range_tree.c

[27] Linux Foundation. 2025. Lock statistics. https://docs.kernel.org/
locking/lockstat.html

[28] Linux Foundation. 2025. Sequence counters and sequential locks.

https://docs.kernel.org/locking/seqlock.html
[29] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm.

1999. Tornado: Maximizing locality and concurrency in a shared

memory multiprocessor operating system. In Proceedings of the
3rd Symposium on Operating Systems Design and Implementa-
tion (OSDI 99). USENIX Association, New Orleans, LA, 87–100.

https://www.usenix.org/conference/osdi-99/tornado-maximizing-
locality-and-concurrency-shared-memory-multiprocessor

[30] Sanjay Ghemawat and Jeff Dean. 2025. LevelDB. https://github.com/
google/leveldb

[31] Sanjay Ghemawat and Paul Menage. 2005. TCMalloc: Thread-caching

malloc. https://goog-perftools.sourceforge.net/doc/tcmalloc.html
[32] Will Glozer. 2025. Wrk - a HTTP benchmarking tool. https://github.

com/wg/wrk
[33] GNU. 2025. GNU C library. https://www.gnu.org/software/libc
[34] Leo J. Guibas and Robert Sedgewick. 1978. A dichromatic framework

for balanced trees. In Proceedings of the 19th Annual Symposium on
Foundations of Computer Science (SFCS ’78). IEEE Computer Society,

USA, 8–21. doi:10.1109/SFCS.1978.3
[35] Timothy L. Harris. 2001. A pragmatic implementation of non-blocking

linked-lists. In Proceedings of the 15th International Conference on Dis-
tributed Computing (DISC ’01). Springer-Verlag, Berlin, Heidelberg,
300–314.

[36] Liam R. Howlett. 2025. Maple tree. https://docs.kernel.org/core-
api/maple_tree.html

[37] June-Hyung Kim, Jangwoong Kim, Hyeongu Kang, Chang-Gyu Lee,

Sungyong Park, and Youngjae Kim. 2019. pNOVA: Optimizing shared

1145

https://httpd.apache.org
https://doi.org/10.1145/3064176.3064193
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/1454115.1454128
https://www.usenix.org/conference/osdi-08/corey-operating-system-many-cores
https://www.usenix.org/conference/osdi-08/corey-operating-system-many-cores
https://www.usenix.org/conference/osdi10/analysis-linux-scalability-many-cores
https://www.usenix.org/conference/osdi10/analysis-linux-scalability-many-cores
https://lwn.net/Articles/746537
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2465351.2465373
https://doi.org/10.1145/2699681
https://lwn.net/Articles/378911
https://lwn.net/Articles/378911
https://lwn.net/Articles/724502
https://lwn.net/Articles/724502
https://lwn.net/Articles/787629
https://lwn.net/Articles/787629
https://lwn.net/Articles/906852
https://liburcu.org
https://lwn.net/Articles/725607
https://lwn.net/Articles/725607
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/drm_mm.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/drm_mm.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/nouveau/nouveau_uvmm.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/nouveau/nouveau_uvmm.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/xfs/scrub/bitmap.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/xfs/scrub/bitmap.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/xfs/scrub/bitmap.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/range_tree.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/range_tree.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/range_tree.c
https://docs.kernel.org/locking/lockstat.html
https://docs.kernel.org/locking/lockstat.html
https://docs.kernel.org/locking/seqlock.html
https://www.usenix.org/conference/osdi-99/tornado-maximizing-locality-and-concurrency-shared-memory-multiprocessor
https://www.usenix.org/conference/osdi-99/tornado-maximizing-locality-and-concurrency-shared-memory-multiprocessor
https://github.com/google/leveldb
https://github.com/google/leveldb
https://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.gnu.org/software/libc
https://doi.org/10.1109/SFCS.1978.3
https://docs.kernel.org/core-api/maple_tree.html
https://docs.kernel.org/core-api/maple_tree.html

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

file I/O operations of NVM file system on manycore servers. In Pro-
ceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on Systems
(Hangzhou, China) (APSys ’19). Association for Computing Machinery,

New York, NY, USA, 1–7. doi:10.1145/3343737.3343748
[38] Alex Kogan, Dave Dice, and Shady Issa. 2020. Scalable range locks for

scalable address spaces and beyond. In Proceedings of the 15th European
Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for Computing Machinery, New York, NY, USA, 1–15.

doi:10.1145/3342195.3387533
[39] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wis-

niewski, Jimi Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan

Appavoo, Maria Butrico, Mark Mergen, AmosWaterland, and Volkmar

Uhlig. 2006. K42: Building a complete operating system. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2006 (Leuven, Belgium) (EuroSys ’06). Association for Computing

Machinery, New York, NY, USA, 133–145. doi:10.1145/1217935.1217949
[40] Mohan Kumar Kumar, Steffen Maass, Sanidhya Kashyap, Ján Veselý,

Zi Yan, Taesoo Kim, Abhishek Bhattacharjee, and Tushar Krishna.

2018. LATR: Lazy translation coherence. In Proceedings of the 23rd
International Conference on Architectural Support for Programming
Languages and Operating Systems (Williamsburg, VA, USA) (ASPLOS
’18). Association for Computing Machinery, New York, NY, USA, 651–

664. doi:10.1145/3173162.3173198
[41] Michel Lespinasse. 2020. [RFC,00/24] Fine grained MM lock-

ing. https://patchwork.kernel.org/project/linux-mm/cover/
20200224203057.162467-1-walken@google.com

[42] Michel Lespinasse. 2021. Speculative page faults. https://lwn.net/
Articles/851853

[43] Michel Lespinasse. 2025. Linux. https://github.com/lespinasse/linux
[44] Jinyang Li, Boon Thau Loo, Joseph M. Hellerstein, M. Frans Kaashoek,

David R. Karger, and Robert Morris. 2003. On the Feasibility of Peer-

to-Peer Web Indexing and Search. In Peer-to-Peer Systems II, M. Frans

Kaashoek and Ion Stoica (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 207–215.

[45] Yandong Mao, Robert Morris, and Frans Kaashoek. 2010. Optimizing
MapReduce for multicore architectures. Technical Report MIT-CSAIL-

TR-2010-020. MIT CSAIL.

[46] Larry McVoy and Carl Staelin. 1996. lmbench: Portable tools for

performance analysis. In Proceedings of the USENIX 1996 Annual Tech-
nical Conference (USENIX ATC 96). USENIX Association, San Diego,

CA, 1–17. https://www.usenix.org/conference/usenix-1996-annual-
technical-conference/lmbench-portable-tools-performance-analysis

[47] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and Taesoo Kim.

2016. Understanding manycore scalability of file systems. In Proceed-
ings of the 2016 USENIX Annual Technical Conference (USENIX ATC 16).
USENIX Association, Denver, CO, 71–85. https://www.usenix.org/
conference/atc16/technical-sessions/presentation/min

[48] MongoDB. 2025. MongoDB. https://www.mongodb.com
[49] Nir N Shavit, Yosef Lev, and Maurice P Herlihy. 2011. Concurrent Lock-

free Skiplist with Wait-free Contains Operator. https://patentcenter.
uspto.gov/applications/12191008 US Patent 7,937,378.

[50] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-adjusting

Binary Search Trees. J. ACM 32, 3 (July 1985), 652–686. doi:10.1145/
3828.3835

[51] Jeremy Stribling, Jinyang Li, and Isaac G. Councill. 2006. OverCite: A

distributed, cooperative CiteSeer. In Proceedings of the 3rd Symposium
on Networked Systems Design & Implementation (NSDI 06). USENIX As-

sociation, San Jose, CA, 143–153. https://www.usenix.org/conference/
nsdi-06/overcite-distributed-cooperative-citeseer

[52] Linux test project. 2025. Linux test project. https://github.com/linux-
test-project/ltp

[53] Volkmar Uhlig. 2007. The Mechanics of In-kernel Synchronization for

a Scalable Microkernel. SIGOPS Oper. Syst. Rev. 41, 4 (July 2007), 49–58.

doi:10.1145/1278901.1278909

[54] David Wentzlaff and Anant Agarwal. 2009. Factored Operating Sys-

tems (fos): The Case for a Scalable Operating System for Multicores.

SIGOPS Oper. Syst. Rev. 43, 2 (April 2009), 76–85. doi:10.1145/1531793.
1531805

[55] Pavel Yosifovich, Alex Ionescu, Mark E Russinovich, and David A

Solomon. 2017. Windows Internals: System Architecture, Processes,
Threads, Memory Management, and More, Part 1. Microsoft Press.

[56] Qi Zheng. 2022. [RFC PATCH 00/18] Try to free user PTE page ta-

ble pages. https://lwn.net/ml/linux-kernel/20220429133552.33768-1-
zhengqi.arch@bytedance.com

[57] Peter Zijlstra. 2014. Another go at speculative page faults. https:
//lwn.net/Articles/617344

1146

https://doi.org/10.1145/3343737.3343748
https://doi.org/10.1145/3342195.3387533
https://doi.org/10.1145/1217935.1217949
https://doi.org/10.1145/3173162.3173198
https://patchwork.kernel.org/project/linux-mm/cover/20200224203057.162467-1-walken@google.com
https://patchwork.kernel.org/project/linux-mm/cover/20200224203057.162467-1-walken@google.com
https://lwn.net/Articles/851853
https://lwn.net/Articles/851853
https://github.com/lespinasse/linux
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/lmbench-portable-tools-performance-analysis
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/lmbench-portable-tools-performance-analysis
https://www.usenix.org/conference/atc16/technical-sessions/presentation/min
https://www.usenix.org/conference/atc16/technical-sessions/presentation/min
https://www.mongodb.com
https://patentcenter.uspto.gov/applications/12191008
https://patentcenter.uspto.gov/applications/12191008
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/3828.3835
https://www.usenix.org/conference/nsdi-06/overcite-distributed-cooperative-citeseer
https://www.usenix.org/conference/nsdi-06/overcite-distributed-cooperative-citeseer
https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
https://doi.org/10.1145/1278901.1278909
https://doi.org/10.1145/1531793.1531805
https://doi.org/10.1145/1531793.1531805
https://lwn.net/ml/linux-kernel/20220429133552.33768-1-zhengqi.arch@bytedance.com
https://lwn.net/ml/linux-kernel/20220429133552.33768-1-zhengqi.arch@bytedance.com
https://lwn.net/Articles/617344
https://lwn.net/Articles/617344

Scalable Address Spaces using Concurrent Interval Skiplist SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

1: struct Node
2: start: int, end: int, height: int,

3: next[MAX_HEIGHT]: Atomic<Node*>

4: function GetPredSucc(list, start, end)

5: restart:
6: predNodes← []; succNodes← []

7: predNode← list.head

8: for i fromMAX_HEIGHT-1 to 0 do
9: prev← predNode

10: (node, pFlag)← prev.next[i].load()

11: if pFlag ∈ (DELETED, INVALIDATED) then
12: goto restart
13: loop
14: while node ≠ null do
15: (next, nFlag)← node.next[i].load()

16: if nFlag ∈ (NONE, LOCKED) then
17: break
18: if nFlag = INVALIDATED then
19: goto restart
20: if pFlag ≠ LOCKED &&

!prev.next[i].cmpxchg(node, next) then
21: goto restart
22: node← next

23: if node = null || node.start > end then
24: break
25: if node.end < start then
26: predNode← node

27: prev← node; pFlag← nFlag

28: node← next

29: predNodes.pushFront(predNode)

30: succNodes.pushFront(node)

31: return (predNodes, succNodes)

32: function Lock(list, start, end)

33: restart:
34: (preds, _)← GetPredSucc(list, start, end)

35: node← preds[0]

36: if !node.lock() then
37: goto restart
38: lockedNodes← [node]

39: (next, _)← node.next[0].load()

40: while next && next.start ≤ end do
41: if !next.lock() then
42: (next, _)← next.next[0].load()

43: node.next[0].store(WithFlag(next, LOCKED))
44: continue
45: lockedNodes.pushBack(next)

46: if next.end < start then
47: node.unlock()

48: lockedNodes.popFront()

49: node← next; (next, _)← node.next[0].load()

50: return lockedNodes

51: function Swap(list, start, end, lockedNodes, newNodes)

52: (pred, oldNodes) = (lockedNodes[0], lockedNodes[1:])

53: for node ∈ oldNodes do
54: for i from node.height-1 to 1 do
55: loop
56: (next, _)← node.next[i].load()

57: marked←WithFlag(next, DELETED)
58: if node.next[i].cmpxchg(next, marked) then
59: break
60: leftMost← [null] × MAX_HEIGHT
61: rightMost← [null] × MAX_HEIGHT
62: maxHeight← 0

63: for node ∈ newNodes do
64: maxHeight←Max(maxHeight, node.height)

65: for i from 0 to node.height-1 do
66: if leftMost[i] = null then
67: leftMost[i]← node

68: if rightMost[i] ≠ null then
69: rightMost[i].next[i].store(node)

70: rightMost[i]← node

71: (preds, succs)← GetPredSucc(list, start, end)

72: if newNodes.notEmpty() then
73: for i from 0 to maxHeight-1 do
74: rightMost[i].next[i].store(succs[i])

75: pred.next[0].store(newNodes[0])

76: else
77: pred.next[0].store(succs[0])

78: for i from 1 to maxHeight-1 do
79: node← leftMost[i]

80: if !preds[i].next[i].cmpxchg(succs[i], node) then
81: break
82: for node ∈ oldNodes do
83: (next, _)← node.next[0].load()

84: node.next[0].store(

WithFlag(next, INVALIDATED))

Figure 18. Implementation of the new operations in the interval skiplist.

Non-Peer-Reviewed Appendices
A Pseudocode
Fig. 18 presents the pseudocode for the operations newly

introduced in our interval skiplist.

GetPredSucc (line 4) traverses the interval skiplist to

identify the predecessor and successor of [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] at each
level. It uses load() (line 10) to atomically read a pointer

(next[i]) and separate it into the unflagged part and flag bit.

GetPredSucc serves as a helper function in the following.

Lock (line 32) implements the interval skiplist’s Lock oper-
ation (§4.1). It locks all nodes whose intervals or subsequent

gaps overlap with [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑], as well as their level-0 prede-
cessor. These nodes are returned at the end of the operation.

Swap (line 51) implements the interval skiplist’s Swap op-

eration (§4.1). It first processes the old nodes (line 53–line 59)

and new nodes (line 60–line 70), then commits the swap. If

new nodes exist, the predecessor is updated to point to the

first new node (line 75); otherwise, it points to the successor

(line 77). In both cases, the old nodes are made unreachable

in level-0, and the predecessor is unlocked simultaneously.

B Correctness
B.1 Correctness of Lock Operation
In Lock, after locking the predecessor node (line 36), we

repeatedly advance to the next node and attempt to lock it

(line 39–line 49). Locking fails if the node ismarkedDELETED
or INVALIDATED. However, at line 41, failure can only result

from the node being DELETED.

This is because a locked node’s next node never has the

INVALIDATED mark. First, the following excludes the possi-

bility that another thread’s swap marks it so after the locking.

Lemma B.1. If a node is locked by a thread, its level-0 next
node cannot be swapped by another thread.

Proof. A swap requires locking both the predecessor and old

nodes. As a result, any old node involved in a swap requires

its previous node in level-0 locked beforehand. Consequently,

while a thread holds a lock on a node, no other thread can

lock it or proceed to swap its level-0 next node. □

Furthermore, a Swap: (1) renders the old nodes unreach-

able at level-0 (except from each other) when unlocking

the predecessor, and (2) sets the old nodes’ flags to INVALI-
DATED, ensuring any subsequent lock attempt fails. Thus,

successfully locking a node implies it is not an old node and

does not point to one. We can now conclude the following:

Theorem B.2. If a node is locked, its level-0 next node never
has the INVALIDATED mark.

B.2 Linearizability
To demonstrate linearizability, we identify the linearization

point of our new Swap operation. The linearization point is

line 75 when newNodes is not empty, and is line 77 when

newNodes is empty. At this point, the following actions occur

atomically: (1) all old nodes become unreachable in level-0,

(2) all new nodes become reachable, and (3) the predecessor
node is unlocked.

1147

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

C Evaluation on a Single-Socket Machine
Figs. 19 to 24 present the evaluation results from §7, this

time obtained on a single-socket machine equipped with an

AMD EPYC 7543 processor (2.8GHz, 32 cores, 64 threads),

256GiB of DRAM (eight 32GiB modules), and a 4TB WD

BLACK SN850X SSD.

Query Alloc Map0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
te

nc
y

(μ
s)

Interval Skiplist
Maple Tree

(a) Latency
0 10 20 30 40 50 60

Threads

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Query

Interval Skiplist
Maple Tree

0 10 20 30 40 50 60

Threads

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Alloc

0 10 20 30 40 50 60

Threads

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Map

(b) Throughput
Figure 19. Performance of interval skiplist and maple tree.

Test Linux (𝜇s) IntervalVM (𝜇s) Overhead
null syscall 0.158 0.160 1.40%

stat 1.13 1.13 0.248%

open+close 2.44 2.49 2.00%

pipe 6.75 6.77 0.364%

fork+exit 247 284 15.2%

page fault 0.356 0.371 4.38%

mmap+fault+munmap 11875 13138 10.6%

file create 15.3 15.1 -1.11%

file delete 9.76 9.78 0.198%

ctxsw 2p/0k 2.55 2.55 -0.196%

Figure 20. LMbench results (lower is better).

IntervalVM IntervalVM w/o Arena Linux

IntervalVM w/o Per-core Stats RadixVM

0 10 20 30 40 50 60
Threads

5

10

15

20

25

30
Th

ro
ug

hp
ut

 (M
 o

p/
s)

Alloc

0 10 20 30 40 50 60

Threads

20

40

60

80

100

Th
ro

ug
hp

ut
 (K

 o
p/

s)

Alloc + Fault + Modify

Figure 21. Throughput of each microbenchmark.

IntervalVM IntervalVM w/o Alloc Linux

IntervalVM w/o Fault IntervalVM w/o Modify RadixVM

0 10 20 30 40 50 60

Threads

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 (K

 re
q/

s)

(a) Apache (single process)

0 10 20 30 40 50 60

Threads

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (G

iB
/s

)

(b) LevelDB

0 10 20 30 40 50 60

Threads

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (G

iB
/s

)

(c)Metis

0 10 20 30 40 50 60

Threads

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (j

ob
s/

ho
ur

)

(d) Psearchy

Figure 22. Multithreaded throughput of Apache (single

process), LevelDB, Metis, and Psearchy.

Kernel (K req/s)

Linux 106.8

IntervalVM w/o Fault 67.8

IntervalVM w/o Alloc 33.0

IntervalVM w/o Modify 12.6

IntervalVM 223.3

Figure 23. Apache throughput under default configuration.

fa
ce

sim x2
64

flu
id

an
im

at
e

bo
dy

tra
ck

fre
qm

in
e

ca
nn

ea
l

ra
yt

ra
ce

fe
rre

t
bl

ac
ks

ch
ol

es
sw

ap
tio

ns
st

re
am

clu
st

er
vip

s
de

du
p

0.00
0.25
0.50
0.75
1.00
1.25

No
rm

al
ize

d
Th

ro
ug

hp
ut

0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.05
1.20

Figure 24. Normalized throughput of IntervalVM relative

to Linux across PARSEC benchmarks (higher is better).

1148

	Abstract
	1 Introduction
	2 Background
	2.1 Interval Map
	2.2 Address Space

	3 Scalability Challenges and Our Ideas
	3.1 Dynamic Locking Intervals
	3.2 Scalable and RCU-Safe Interval Updates
	3.3 Operations on the Entire Data Structure
	3.4 Alloc Strategy
	3.5 Resource Limits

	4 Concurrent Interval Skiplist
	4.1 Interface
	4.2 Concurrent Interval Linked List
	4.3 Concurrent Interval Skiplist

	5 Address Space with Parallel Operations
	5.1 Two-Level Locking for Hybrid Granularity
	5.2 Fault
	5.3 Alloc
	5.4 Modify

	6 Implementation
	7 Evaluation
	7.1 Data Structure Microbenchmark
	7.2 Address Space Microbenchmark
	7.3 Address Space Macrobenchmark

	8 Related Work
	8.1 Fault Operations in Parallel with Updates
	8.2 RadixVM
	8.3 Range Locking
	8.4 Replicating Data Structures
	8.5 Locks with Adaptive Granularity

	9 Conclusion
	Acknowledgments
	References
	A Pseudocode
	B Correctness
	B.1 Correctness of Lock Operation
	B.2 Linearizability

	C Evaluation on a Single-Socket Machine

