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Abstract

A kernel’s address space design can significantly bottle-
neck multi-threaded applications, as address space opera-
tions such as mmap () and munmap() are serialized by coarse-
grained locks like Linux’s mmap_lock. Such locks have long
been known as one of the most intractable contention points
in memory management. While prior works have attempted
to address this issue, they either fail to sufficiently parallelize
operations or are impractical for real-world kernels.

We present the first scalable and practical address space
design that parallelizes critical operations. We identify key
scalability bottlenecks—many of which extend beyond ad-
dress spaces—and address them with targeted solutions. At
its core is the concurrent interval skiplist, a new data struc-
ture that integrates mapping and locking for parallel inter-
val operations. We implement our design on Linux 6.8 and
evaluate it on a dual-socket 48-core machine. Our results
show a significant throughput improvement of 13.1x for an
mmap () microbenchmark, 4.49% for LevelDB, 3.19x for the
Apache web server, 1.47x for Metis MapReduce, and 1.27x
for Psearchy text indexing.

CCS Concepts: « Software and its engineering — Oper-
ating systems; Virtual memory; « Computing method-
ologies — Concurrent algorithms.
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1 Introduction

The OS kernel’s virtual memory management system man-
ages a process’s address space through operations that fall
into the following categories. (1) Fault operations lookup the
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Figure 1. Ratio of time wasted waiting for the mmap_lock to
total execution time on Linux 6.8.0 for various applications.

address space and update its page table as necessary. (2) Alloc
operations allocate an address interval via the mmap () system
call in POSIX-compliant systems. This is frequently used in
modern malloc() implementations to create multiple inde-
pendent arenas for multicore performance [22, 31, 33],' and
when creating file-backed memory. (3) Modify operations
update the address space by modifying existing mappings
via the munmap () or mprotect() system calls.

Problem. Current address space designs can significantly
bottleneck multi-threaded applications due to the serializa-
tion of Alloc and Modify operations. In the kernel, this se-
rialization stems from the use of a coarse-grained lock to
synchronize address space operations [13], such as the read-
write mmap_lock in Linux. While Faults acquire the lock in
read mode (or not at all, see §2.2), enabling their parallel exe-
cution, Alloc and Modify operations acquire the lock in write
mode, which can lead to serialization. This lock has long been
recognized as “one of the most intractable contention points
in the memory-management subsystem” [17, 18].

This issue indeed severely impacts numerous virtual mem-
ory intensive applications that frequently invoke Alloc or
Modify operations [10, 40]. Experiments on Linux 6.8.0 (re-
leased March 2024) with a dual-socket 48-core machine using
lockstat [27] reveal significant performance degradation.
Fig. 1 shows that the Apache [2] web server, the Metis [45]
MapReduce framework, Psearchy [10] text indexing, and
LevelDB [30] waste up to 90%, 60%, 41%, and 40%* of their ex-
ecution time, respectively, waiting for the mmap_lock at high

In contrast, older implementations of malloc() often use a single heap
managed by brk(), which limits scalability by concentrating contention.
2For LevelDB, this ratio decreases at high thread counts because LevelDB’s
global database lock [3] becomes a larger bottleneck (see §7.3).
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thread counts. Contention on mmap_lock directly hinders
multicore scalability (see §7 for experimental details).

Prior work. Despite prior efforts to address these issues,
the fundamental problem remains largely unsolved. These
efforts either fail to parallelize Alloc and Modify operations
or are impractical for real-world kernels (see §8 for details).

In Linux, many proposals have been made, but none fully
parallelizes the Alloc or Modify operations. For instance,
Linux recently introduced per-VMA locking [19], allowing
Faults to run in parallel with Alloc or Modify, but still serial-
izes the Alloc and Modify operations. As such, a significant
portion of time is wasted even in Linux 6.8.0, which sup-
ports per-VMA locking (Fig. 1). As another example, several
Linux patches [11, 41] attempted to parallelize operations
by replacing the mmap_lock with a range lock, but they still
typically require global locking (see §8.3).

RadixVM [14], implemented on the sv6 research kernel,
is the only approach that parallelizes Alloc and Modify op-
erations. However, its radix tree is not well-suited for RCU,
which is crucial for performance (see §3.2). Moreover,
RadixVM makes simplifying assumptions that makes it im-
practical for real-world adoption. For example, it relies on
a simplistic heuristic that can rapidly exhaust the address
space, and it uses per-page metadata, causing significant
memory overhead.

Several applications use workarounds to circumvent the
bottleneck, but each has significant drawbacks. Using multi-
ple processes instead of threads can improve scalability, but
can require heavy inter-process communication and large
changes to the application structure. Performing mmap () in
large chunks can reduce contention, but can substantially in-
crease memory usage and fragmentation [6]. Many popular
malloc() implementations, such as jemalloc [22] (in 64-bit
Linux) and tcmalloc [31], do not perform munmap() at all,
tying up memory and placing additional burden on the oper-
ating system [14]. Moreover, even with these workarounds,
current address space designs will easily bottleneck applica-
tions as memory usage and thread counts increase.

Our approach. We introduce a new scalable address space
design that effectively parallelizes not only Fault but also
Alloc and Modify operations. At its core is a new concurrent
interval skiplist that integrates mapping and locking to sup-
port parallel interval operations. We further introduce new
locking schemes, Alloc strategies, and scalable counters, all
of which are essential for building a truly scalable address
space. Specifically, we make the following contributions.

In §3, we analyze the scalability challenges of address
spaces and outline our solutions. A core challenge is replac-
ing the coarse-grained lock with fine-grained ones while ad-
dressing the dynamic nature of the required locking intervals.
Furthermore, we identify several new scalability challenges
that were not previously discussed in the literature. Many of
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the challenges have broad applicability, extending beyond
address spaces to diverse real-world systems.

In §4, as a key solution to the scalability challenges, we
introduce the concurrent interval skiplist. Similar to existing
data structures for address spaces, it implements an interval
map, where each node maps an (address) interval to a value.
This interval skiplist handles the dynamic nature of locking
intervals by integrating the functionalities of both a map data
structure and a locking mechanism. Furthermore, it supports
parallel interval operations via fine-grained locking, while
ensuring RCU-safe, lock-free traversals.

In §5, based on our interval skiplist, we propose a new
address space design that parallelizes operations. We design
(1) a general locking scheme that complements fine-grained
locks with efficient support for global locking, (2) a scalable
Alloc strategy based on a redesigned process address space
layout and hierarchical leveling within our interval skiplist,
and (3) a scalable counter to enforce resource limits.

In §6, we describe our implementation on Linux 6.8.0. Our
implementation supports POSIX and is fully transparent to
applications, requiring no modifications to them.

In §7, we evaluate the performance. Our design outper-
forms Linux in throughput, by up to 13.1x for an Alloc mi-
crobenchmark, 4.49% for LevelDB, 3.19x for the Apache web
server, 1.47x for Metis MapReduce, and 1.27x for Psearchy
text indexing.

Our implementation and evaluation scripts are available
at https://github.com/kaist-cp/interval-vm.git.

2 Background
2.1 Interval Map

An interval map is a data structure where each node asso-
ciates an interval with a value. It is a fundamental structure
for managing spaces or memory in address intervals. Exam-
ples in kernels include address spaces, device drivers [23, 24],
arenas [26], and file systems [25]. As we will see below, these
use cases often require querying the interval map, allocating
an interval, updating an interval, or removing one.

2.2 Address Space

We review address spaces, which consist of (1) an address
map for virtual memory metadata, and (2) a page table hier-
archy that maps virtual pages to physical frames.

Address map. The kernel maintains an interval map that as-
sociates an address interval with a corresponding metadata
structure (e.g., VMA in Linux, vm_map_entry in FreeBSD,
or VAD in Windows [55]). This structure stores informa-
tion about the interval, such as permission flags and the file
associated with file-backed memory. Fig. 2 illustrates an ex-
ample address map, where [0x2A, 0x46] is file-backed, while
[0x21,0x28] and [0x50, 0x58] are not (i.e., anonymous).

To implement address maps, Linux, FreeBSD, Windows,
and other operating system kernels use red-black trees [34],
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Figure 2. An address space consisting of an address map
and a page table hierarchy. Each metadata structure in the
address map is connected to its corresponding page table
entries via dashed lines. An orange block in the page table
hierarchy represents a present entry. A metadata structure
can be partially mapped in page tables under lazy allocation.

B-trees [5], splay trees [50], or AVL trees [1]. In particular,
Linux 6.8.0 uses an RCU-safe B-tree, known as the maple
tree [36], as the address map. In a maple tree, traversals are
lock-free, allowing them to be performed in parallel with
updates during an RCU critical section.

Page table hierarchy. The kernel maintains a hierarchical
mapping from virtual addresses to physical addresses for the
CPU. In a four-level page table hierarchy, for example, the
page table is at the lowest level, while the page middle direc-
tory, page upper directory, and page global directory occupy
higher levels. Fig. 2 illustrates two page tables referenced by
a page middle directory.

Operations. We focus on three kinds of address space oper-
ations.

Fault operations handle page faults. A page fault occurs
when the CPU accesses a virtual address that is not mapped
or permitted in the page table. For minor page faults, which
typically occur when accessing a virtual address for the first
time under lazy allocation, the handler retrieves information
for the faulting address from the address map and updates the
page table. A new page is zero-filled for anonymous memory
or populated with the contents for file-backed memory. For
major page faults, which occur when accessing a virtual
address whose data resides on a swap device, the handler
pages the data in from the device. Because major page faults
suffer from the high latency of secondary storage devices,
we focus on the scalability of minor page faults.

Alloc operations handle the allocation of an address in-
terval, such as invoking mmap() on the NULL address. They
are used in modern implementations of malloc() to create
multiple independent arenas for improved multicore per-
formance [22, 31], and in memory-mapped I/O to map an
address interval to a file. An Alloc operation linearly tra-
verses the address map to find a large enough unused space,
claims it, and adds a mapping for it in the address map.

Modify operations handle updates to the address space.
For example, an unused interval can be freed with munmap ()
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or repurposed by overwriting it with mmap (). Also, we may
shrink or extend an interval using brk() or mremap(), or
update the metadata using madvise() ormprotect(). These
operations may span multiple intervals in the address map,
requiring updates to multiple metadata structures.

Synchronization baseline. For correctness, address space
operations must be properly synchronized, and kernels use
locks for synchronization, as we describe here.

Address space locks are used to synchronize address
space operations. Most kernels employ a single coarse-grained
read-write lock (e.g., FreeBSD’s vm_map->lock), whereas
Linux 6.8.0 adopts a more sophisticated approach. In Linux,
the primary lock is the mmap_lock, which is a coarse-grained
read-write lock that synchronizes Alloc, Modify, and some
Fault operations. Both Alloc and Modify operations always
acquire the mmap_lock in write mode, potentially resulting
in their serialization. Certain Fault operations, such as major
faults, acquire mmap_lock in read mode. However, in Linux
6.8.0, Fault operations more commonly rely on per-VMA
locks [19] to synchronize with concurrent Alloc and Modify
operations. Rather than acquiring mmap_lock, a typical Fault
operation proceeds as follows: (1) it searches for the VMA
in the address map using a lock-free traversal, to synchro-
nize with a concurrent address map update due to Alloc and
Modify operations. Here, the use of the RCU-safe maple tree
is essential. Then (2) it read-locks the VMA using its associ-
ated read-write lock, to synchronize with the overlapping
Alloc and Modify operations that write-lock the same VMA.
This allows Fault operations to execute in parallel with a
non-overlapping Alloc or Modify operation.

Page table hierarchy spinlocks protect updates to the
page table hierarchy. In Linux, for example, each page table
and page middle directory has its own lock, while higher-
level tables share a global lock due to low contention. These
spinlocks are fine-grained and held only briefly, causing
minimal contention [13]. As such, we follow the literature to
use these spinlocks and focus on the contention of address
space locks.

3 Scalability Challenges and Our Ideas

We identify several significant challenges to achieving scala-
bility in address spaces, such as replacing the coarse-grained
address space lock with fine-grained locks to enable parallel
operations. Prior work has not discussed these issues (except
for the one discussed in §3.1) and thus has not adequately
addressed them (see §8 for details). Many of these challenges
extend beyond the address space itself, limiting the scalabil-
ity of diverse real-world systems. We outline each challenge
and briefly describe our approach to addressing it.

3.1 Dynamic Locking Intervals

Address space operations often access multiple structures,
such as metadata structures or page tables, whose boundaries
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Figure 4. Not only the munmap () interval but also the neigh-
boring gaps must be locked to safely free the page table.

may not align with the operation itself [38]. Both address
space operations and metadata structures start and end at
arbitrary points aligned to 4KiB pages. Furthermore, each
page table typically spans a 2MiB region, which may not
align with either the boundaries of the metadata structures
or the operation’s interval.

This misalignment makes it particularly challenging to re-
place the coarse-grained address space lock with fine-grained
locks for scalability: the required locking interval to safely
perform an operation depends on the address map’s dynamic
state. For instance, Fig. 3 shows that even operations target-
ing disjoint intervals must be synchronized if they access
the same metadata structure. To maintain consistency, the
lock interval must cover the entire metadata structure.

Fig. 4 presents a more complex example in Linux. After
an munmap () operation clears page table entries, it must also
free any now-empty page tables. Instead of scanning the
page table after every update, Linux optimizes this process
by freeing page tables whose address intervals no longer in-
tersect with any metadata structure. Specifically, it traverses
the page table hierarchy and frees any table fully contained
within the munmap () interval and its neighboring gaps. Cru-
cially, while freeing these tables, the lock interval must also
include these neighboring gaps to prevent concurrent opera-
tions from repopulating them.

To address this issue, previous approaches [11, 38, 41, 43]
typically (1) traverse the address map to identify the exact
interval to lock, and (2) lock that interval. However, splitting
the operation into two distinct steps fundamentally compli-
cates synchronization as follows, often forcing them to fall
back on coarse-grained locks (see §8.3 for details).

e A race can occur between (1) and (2), causing the initially
identified interval to become outdated and requiring a
retry. This problem is especially prevalent under high
contention, where multiple concurrent updates target
the same region of the address map (cf. §3.4).
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Figure 5. Under RCU, updating the blue leaf nodes requires
copying and replacing their red ancestor nodes.

e The address map itself must be protected by a separate
lock or other concurrency control mechanisms. The lock
acquired in step (2) does not protect the traversal in step
(1), as the traversal occurs beforehand.

Our idea. We unify these two steps within our new concur-
rent interval skiplist, which supports both lock-free traversal
and node-granular locking on an interval map (§4).

3.2 Scalable and RCU-Safe Interval Updates

Scalable interval updates. Existing interval maps serialize
interval updates to guarantee atomicity across all consecu-
tive nodes in the interval. These designs are optimized for
single-node operations rather than updates spanning multi-
ple nodes, highlighting the need for scalable interval update.

RCU-safe interval updates. RCU-safe support for interval
updates is also crucial for performance, but achieving it effi-
ciently is challenging with existing data structures. RCU en-
ables Fault operations to proceed concurrently with updates
(see §2.2), and allows an Alloc operation to scan the address
map for free space without locking the entire address space.
Without RCU, performance can degrade significantly [13].

However, traditional tree-based structures are not well-
suited for RCU. Enabling RCU requires updates to proceed by
(1) copying a structure, (2) modifying the copy, and (3) atom-
ically replacing the original. This process becomes costly
when an interval spans multiple subtrees, since every node
along the affected paths must be copied. As illustrated in
Fig. 5, updating the blue leaf nodes requires duplicating and
replacing their red ancestor nodes. Tree rebalancing exac-
erbates the problem, as it may need to modify neighboring
nodes or propagate upward to a parent, increasing the num-
ber of affected nodes. In addition, efficiently synchronizing
such updates with locks remains an open challenge.

The cost grows further in data structures that store many
entries per node for performance. For example, Linux’s maple
tree stores 10-16 entries per node, while RadixVM’s radix
tree stores 128-512 entries. This increases the cost of copying,
and the entire node must be copied even when only a few
consecutive entries are updated.

Our idea. In §4, we design a scalable interval skiplist that
supports atomic updates of consecutive nodes using node-
granular locks, while remaining RCU-safe.
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3.3 Operations on the Entire Data Structure

Certain operations span the entire address space and thus re-
quire global locking. These include fork(), which clones the
address space, and exit (), which destroys it. Simply replac-
ing the coarse-grained address space lock with fine-grained
alternatives (e.g., per metadata structure) would force these
operations to acquire all fine-grained locks, leading to signif-
icant overhead—especially since applications often manage
hundreds of thousands of metadata structures [12, 48].

This challenge is not unique to memory management. For
instance, the coarse-grained inode locks (inode->i_rwsem)
in Linux are a well-known scalability bottleneck [47], and
prior work has attempted to address this by introducing
fine-grained locks, e.g., using a separate lock for each 4KiB
block [37]. However, this approach incurs significant over-
head for common file system operations, such as copy or
remove, which need to access all blocks and thus require
locking them simultaneously [38].

This problem is especially pronounced when transitioning
from coarse- to fine-grained locking. In such cases, all fine-
grained locks often need to be acquired simultaneously, as
legacy code lacks support for finer-grained locking mecha-
nisms. This kind of staged transition is frequently necessary
in large-scale systems, where an all-at-once overhaul is in-
feasible due to its complexity [17].

Our idea. In §5.1, we design a new distributed lock that
complements fine-grained locks to efficiently support global
locking. Our key idea is to lock CPU cores rather than indi-
vidual structures, such as nodes or metadata structures.

3.4 Alloc Strategy

A kernel’s Alloc strategy can also severely limit scalability.
When handling an Alloc operation, kernels such as Linux
or FreeBSD use a first-fit strategy: they linearly traverse the
interval map from a common starting point until they find a
sufficiently large unused region, which they then claim, such
as by inserting a new interval. However, this approach causes
concurrent Allocs to contend at the same point—the first
available space after the common starting point—introducing
a severe performance bottleneck (see §7.2).

Our idea. In §5.3, we introduce a scalable Alloc strategy
that (1) inserts nodes with atomic instructions like CAS,
(2) redesigns the process address space layout to include
multiple arenas, and (3) organizes the interval skiplist to
support arenas in a scalable manner.

3.5 Resource Limits

In kernels, system-wide limits on specific resources are com-
monly enforced using mechanisms such as sysctl or the
POSIX setrlimit(). For example, the number of metadata
structures or pages in an address space can be restricted.
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However, maintaining global counters for such resources
can become a significant performance bottleneck due to
synchronization and cacheline bouncing. This bottleneck
becomes prominent once other performance limitations are
addressed (see §7.2 for experiments). While Linux offers
an alternative counting mechanism called percpu_counter,
which buffers updates in per-core counters and periodically
flushes them to a global counter when a threshold is reached,
it cannot enforce strict limits.

Our idea. In §5.3, we introduce a scalable counter that
achieves both scalability and enforcement of limits. Our ap-
proach is adaptive: it gradually phases out the use of per-
core counters as the global counter approaches its limit. This
design is crucial for scalable Alloc and Modify operations,
which frequently update these counters.

4 Concurrent Interval Skiplist

We introduce our data structure’s interface (§4.1), design a
concurrent interval linked list (without skip links) that imple-
ments the interface (§4.2), and extend it to a interval skiplist
(§4.3). In the appendix, we provide detailed pseudocode (§A)
and discuss correctness (§B).

4.1 Interface

An interval map typically supports the following operations.

(1) Query(key): Retrieves the interval containing the speci-
fied key—typically a specific integer or address of interest—
and returns the associated value.

(2) Map(start, end, value): Assigns a value (or unassigns if
value is NULL) to the interval [start, end], overwriting
any existing mappings for overlapping parts.

(3) Alloc(start, end, length, value): Inserts an interval of the
given length within the interval [start, end] and asso-
ciates it with the given value.

To address the scalability challenges of address space man-
agement, our concurrent interval skiplist additionally pro-
vides the following operations. We use these new operations
as building blocks not only for the above operations but also
for address space operations (see §5 for details).

(4) Lock(start, end): Acquires exclusive write lock for the
interval [start, end], which may span multiple mappings.
To address dynamic locking intervals (§3.1), it performs
a traversal and locking in a unified step. This operation
is internally used to implement Map operations, and it is
also externally invoked to synchronize address space op-
erations. A lock on an interval blocks all other operations
(except for Query) on that interval.

(5) Unlock(start, end): Releases lock for [start, end].

(6) Swap(start, end, nodes): Atomically swaps all nodes that
(partially) overlap with [start, end] with nodes. To ad-
dress the challenge of scalable interval updates (§3.2),
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Figure 6. Update operations in Harris’s lock-free linked list.

this operation requires locking only [start, end], not the
entire map. Additionally, the atomic swap ensures that
lock-free traversals remain linearizable.

4.2 Concurrent Interval Linked List

As a preliminary step, we design a concurrent interval linked
list that implements the aforementioned interface.

Harris’s lock-free linked list [35] supports lock-free traver-
sals and lock-free node insertions and deletions, as illustrated
in Fig. 6. Node insertion involves atomically updating the
predecessor node’s link (next pointer) using a CAS opera-
tion, ensuring that a concurrent reader can only see the state
before or after the insertion. Deletion involves two steps:
(1) Marking the deleting node’s link with a special bit flag
named DELETED, letting it be skipped by readers, and (2) Un-
linking the node from the list by updating its predecessor
node’s link. Each step is performed using atomic instructions,
such as CAS and fetch-and-add. To ensure that operations
remain lock-free, other threads may help step (2) on behalf
of the deleting thread, rather than waiting for the deleting
thread to complete, which could otherwise cause a thread to
block. For lock-free traversals, a thread can continue travers-
ing over marked nodes.

Harris’s list is insufficient for address space designs be-
cause it lacks support for dynamic locking intervals (§3.1)
and atomic operations on multiple consecutive nodes (§3.2).
We address each of these challenges with node-granular in-
terval locking and read-copy-update, respectively.

Node-granular interval locking. This process combines
traversal and locking, as illustrated in Fig. 7a for the inter-
val [32,38]. (1) It first identifies and locks the predecessor
with CAS.? To achieve this, we introduce a new LOCKED
flag for pointers, indicating that the node and its follow-
ing gap are locked. It is important to note that the initially
locked node may no longer be the predecessor if, for exam-
ple, a concurrent insertion occurred before the node was
locked. In such cases, the new predecessor is found by lock-
ing the next node and unlocking the previous one, repeating
this process if necessary. Locking the predecessor is crucial,
even if its interval does not overlap with the target interval,
to support Swap operations and address-space operations
(see §5.4). (2) The process then iteratively locks subsequent
nodes whose intervals or following gaps overlap with the

3Here, the predecessor node is the last node preceding the target interval,
not a target node or key as in the original list.
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target interval. During traversal, it unlinks any encountered
DELETED nodes.

Read-copy-update for Swap. After locking consecutive
nodes, we can atomically swap old nodes overlapping with
the target interval with new nodes in a read-copy-update fash-
ion as follows. (1) We prepare the new nodes (Fig. 7b). (2) We
update the predecessor’s link to the new nodes, thereby com-
mitting the swap and simultaneously unlocking the prede-
cessor by clearing the LOCKED flag (Fig. 7c). (3) We mark
the old nodes as INVALIDATED (Fig. 7d).

The INVALIDATED bit flag indicates that a node is stale
and should not be accessed anymore (except for the Query
operation described below). Encountering this flag during
an update operation triggers a restart to prevent attempting
to insert or remove a node within the old nodes.

Query. A Query operation finds the node whose interval
contains the queried key with the original list’s lock-free tra-
versal. To ensure lock-freedom, LOCKED and INVALIDATED
nodes are treated as ordinary and it is allowed to lookup the
associated values. Query operations remain correct as long
as all updates are performed in a read-copy-update fashion.

Map. A Map operation associates an interval to a value as
follows (Fig. 7). (1) It performs interval locking on the target
interval. (2) It then invokes a Swap with the new nodes,
which include a node that associates the Map interval with
its corresponding value (unless the value is NULL), along
with any non-overlapping portions of the old nodes (Fig. 7b).

Alloc. An Alloc operation simultaneously allocates an inter-
val and maps it to a value. This is achieved by traversing the
list to find a gap of sufficient size and inserting a node using
CAS to claim the gap. A CAS failure can occur under the
following conditions, with corresponding responses: (1) If
the gap is LOCKED, we wait until the lock on the gap is
released. (2) If the gap is INVALIDATED, we restart from the
beginning. (3) If the gap is claimed by another thread, we
continue from the current point to find another suitable gap.

4.3 Concurrent Interval Skiplist

We extend the concurrent interval linked list with skip links.
The techniques for the linked list also apply to the skiplist in
largely the same way, so we focus only on the differences.

Background. A lock-free skiplist [49] is a leveled collection
of lock-free linked lists. Each node has a link at level-0 and
additional skip links at higher levels that act as shortcuts.
While all nodes are linked at base level-0, which serves as
the commit point for operations, each higher level contains
approximately half the nodes of the level below it. This en-
ables skiplists to achieve a probabilistic time complexity of
O(log n) for search, insertion, and deletion.

A concurrent skiplist operation generally replicates the
corresponding lock-free linked list operation at each level.
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Figure 7. An example of performing a Map operation for interval [32, 38] in a list-based interval map.
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(d) Swap the old nodes with new nodes as in (e) In levels 1 and higher, set up the new nodes’ (f) Collectively insert multiple new nodes in

the interval linked list. skip links.

level-1 using a CAS.

Figure 8. An example of performing interval locking and a Swap in an interval skiplist.

Traversal proceeds downward from the top level, bookmark-
ing the predecessor and successor at each level. At each
subsequent level, traversal begins from the predecessor book-
marked at the previous level. Insertion is performed bottom-
up, inserting the node at each level up to its randomly de-
termined height, using the bookmarked predecessor and
successor to maintain consistency. Deletion, similarly to the
linked list operation, involves two steps: (1) A top-down
traversal marks the links and skip links of the node with
the DELETED flag at each level. (2) A subsequent top-down
traversal unlinks the node at each level.

Node-granular interval locking. We perform node locking
only at level-0, as illustrated in Fig. 8a. This is sufficient to
ensure exclusive permission for the node and the following
gap because locking the level-0 link prevents concurrent
insertions and deletions. A node’s deletion is committed by
marking its level-0 link with the DELETED flag, and insertion
is performed by updating its predecessor’s level-0 link.
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Read-copy-update for Swap. It is similar to the interval
linked list, but with two additional steps. (1) We decrement
the height of the old nodes to 1 (Fig. 8b, Fig. 8c). (2) We apply
the swap algorithm (§4.2) developed for linked lists, which
is possible as the relevant portion is effectively a linked list
(Fig. 8d). (3) We increment the heights of the new nodes up
to a randomly decided height, to maintain the probabilistic
time complexity of O(log n) (Fig. 8e, Fig. 8f).

Height adjustments for multiple nodes are performed col-
lectively to avoid repeated traversals, as follows.

To collectively decrement the heights of multiple nodes,
we conceptually remove them from all levels except level-0.
This involves two top-down traversals, excluding level-0:
(1) The first traversal is top-down and is used to mark the
skip links of each node with the DELETED flag (Fig. 8b).
(2) The second traversal is top-down again and is used to
unlink the nodes from the lists (Fig. 8c).

To collectively increment the heights of multiple nodes, we
conceptually insert them at all levels (except level-0, where
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GR | GW | LR | LW
GR | V/ X | vV | X
GW | X X X | X
LR | V/ X |V | A
LW | X X | A| A

Figure 9. Mutual exclusion rules for various locking modes
in our new distributed lock. v (X): Can(not) coexist. A: Can
coexist only if they lock different cores.

they are already in). This involves a top-down traversal and
a following bottom-up traversal, excluding level-0: (1) The
first traversal is top-down and is used to bookmark the pre-
decessor and successor at each level.* We also set up the skip
links of the new nodes to point to the next new node or to
the successor (Fig. 8e). (2) The second traversal is bottom-up
and is used to insert the new nodes at all levels (Fig. 8f). At
each level, we use a single CAS to atomically update the
predecessor’s skip link from the successor to the first new
node in that level, inserting multiple nodes in a level at once.
In the rare event of a CAS failure, we safely abort or retry
from the beginning.

5 Address Space with Parallel Operations

Using our new interval skiplist (§4), we parallelize address
space operations. In §5.1, we introduce a new distributed
lock to optimize operations on the entire address space (§3.3).
In §5.2, 5.3 and 5.4, we design the Fault, Alloc, and Modify
operations, respectively, while addressing the challenges
related to the Alloc strategy (§3.4) and resource limits (§3.5).

5.1 Two-Level Locking for Hybrid Granularity

As we discussed in §3.3, address space management requires
both global locking, which locks the entire address space,
and local locking, which locks only a specific interval.

To address this, we propose a new locking scheme with
hybrid-granular modes: global read (GR), global write (GW),
local read (LR), and local write (LW). A naive implementa-
tion would lock all intervals in the address map for global
modes. However, this introduces substantial overhead, es-
pecially in applications that manage thousands to hundreds
of thousands of intervals. To achieve high performance, we
propose a general two-level locking strategy based on a new
hybrid-granular lock.

We first design this hybrid-granular lock using per-core
read-write locks. (1) For GR/GW, we read/write-acquire all
per-core locks.” (2) For LR/LW, we read/write-acquire the
running core’s lock. Fig. 9 illustrates the mutual exclusion

4Here, the predecessor node is the last node preceding the target interval,
and the successor node is the first node succeeding the target interval.
SQur approach differs from the traditional use of distributed locks [16],
which only supports global locking and where global read locking typically
involves acquiring only a single lock in read mode.
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rules. Notably, this lock correctly implements global locking
while significantly reducing the number of lock acquisitions
compared to the naive approach.

Using this hybrid-granular lock, we protect the address
space as follows. For GR/GW, only the per-core locks are
acquired using the same mode. For LR/LW, a core acquires its
per-core lock using the same mode as well as the necessary
interval lock within the interval skiplist. This allows opera-
tions on non-overlapping intervals to proceed in parallel.

One potential drawback of this approach is the overhead
of global locking when the number of cores is large. This can
be mitigated by grouping cores and assigning shared locks
to each group instead of dedicating one lock per core.

Using this two-level locking scheme for address spaces, we
parallelize operations by attempting them with progressively
stronger locking modes. For each operation, we first attempt
the operation without acquiring address space locks, if pos-
sible. If this fails, we attempt the operation while holding
the per-core lock in LR/LW mode and the corresponding in-
terval lock. Finally, in rare cases where this also fails, we fall
back to the original method while holding the per-core locks
in GR/GW mode. Such cases primarily involve file-backed
memory associated with untested file systems, which may
rely heavily on specific assumptions about the address space
implementation. To ensure correctness, our design is enabled
only for file systems for which we are confident that no such
dependencies exist. We note, however, that no changes are
necessary for most file systems, as such dependencies are
unlikely. We now describe each possible step of the different
address space operations.

5.2 Fault

Faults are handled in three possible steps: without address
space locking, under LR locking, and under GR locking.

Without address space locking. Initially, we attempt to
handle the fault without acquiring address space locks. Our
approach is inspired by RCUVM [13] and previous Linux
attempts [42, 43], but includes the following key improve-
ments: (1) Unlike RCUVM, we support modern techniques
such as transparent huge pages (THP). (2) Unlike previous
Linux attempts [42, 43], we only abort on overlapping address
space updates, rather than on any update.

Under LR locking. The above stage can fail for the follow-
ing reasons. (1) Page table allocation: faults requiring new
page tables cannot be handled due to potential races. The
fault handler cannot cannot tell whether a page table is miss-
ing or has been temporarily cleared, for example, due to a
huge page merge. A page table allocation is necessary for
every 2MiB region of address space. (2) Metadata structure
update: some faults require updating the metadata structure
and thus require proper synchronization. In particular, on
Linux, a first-time fault on an anonymous VMA requires
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Figure 10. Inserting a node in a core’s private arena may
also involve updates in other arenas.

initialization. Assuming each mmap() creates a new VMA,
this can occur as frequently as the number of mmap() calls.
(3) File-backed memory: synchronization with the file system
is needed for file-backed memory.

In such cases, we attempt to handle the fault after acquir-
ing the per-core lock in LR mode and locking the interval
in the interval skiplist, preventing the interval from being
updated or deleted. This allows parallel execution with other
operations on different intervals.

Compared to RCUVM and previous Linux patches [42, 43],
this new step significantly helps improving scalability by not
reverting to global locking. It is crucial given the frequent
occurrence of the failures.

Under GR locking. If the above stage also fails, we revert
to the original method after acquiring the per-core locks in
GR mode. This is rare and occurs primarily with file-backed
memory involving untested file systems (see §6).

5.3 Alloc

Allocation is implemented in two possible steps: first under
LW locking, and then under GW locking.

Under LW locking. We insert a node that represents the
allocated interval into the interval skiplist. Unlike in original
Linux, all necessary preparations—such as setting up the
metadata structure—are completed before the insertion to
avoid updates afterward. Once prepared, the address space
Alloc operation is committed by inserting the node using the
interval skiplist Alloc operation (§4.2).

While helpful, this approach does not fully resolve the
scalability challenges associated with the Alloc strategy (§3.4)
and resource limits (§3.5), which we will address shortly.

Under GW locking. When the process encounters an
untested file system, we revert to the original method af-
ter acquiring the per-core locks in GW mode.

Optimizing Alloc strategy (§3.4). To mitigate contention,
we introduce per-core arenas by partitioning a small por-
tion of the address space into 64-GiB arenas. Each core first
searches for free space within its own per-core arena, falling
back to the shared, non-arena region only when its private
arena is full. Each arena is assigned to a CPU core (or hard-
ware thread), unless the count exceeds a predefined limit
(128 in our implementation). Even with 128 arenas, this ac-
counts for less than 4% of the 256-TiB virtual address space
available on x86-64 systems.
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Figure 11. Separator nodes partition arenas. Upper levels
support traversal between separators, while lower levels
primarily handle traversal within the same arena.

To further reduce contention, we isolate the arenas within
the interval skiplist. As shown in Fig. 10, in a typical skiplist,
inserting a new node (blue) in a core’s private arena may still
require updating nodes in other cores’ arenas (green nodes
and arrows)—a known scalability challenge in skiplists [14].
To address this, we introduce the design shown in Fig. 11:
(1) Each arena is partitioned using dedicated separator nodes.
(2) Levels are organized hierarchically: separator nodes have
a height no smaller than a predefined threshold, whereas
non-separator nodes typically have smaller heights. This
design assigns distinct roles to different levels: upper levels
support traversal between separators, while lower levels
typically handle traversal within a single arena.

Each arena also keeps a hint to speed up Alloc, typically
pointing to the last successful allocation. After an munmap(),
the hint shifts backward to favor reusing unmapped regions.

Optimizing resource limits (§3.5). We design a scalable
counter that uses an adaptive strategy. Similar to Linux’s
percpu_counter, we buffer updates in per-core counters
and flush them to the global counter once they reach a pre-
defined batch size.

However, after a flush, we determine whether continued
use of per-core counters is appropriate. Specifically, if the
remaining margin between the global counter and its limit
is less than the batch size multiplied by the number of cores,
the core ceases using per-core counters and transitions to
direct updates of the global counter.

By selecting an appropriate batch size, we achieve both
scalability and strict limit enforcement. In our implementa-
tion, the batch size is typically set to one-sixteenth of the
global limit divided by the number of cores. As a result, the
transition to direct global updates begins only after the global
counter reaches 93.75% of the limit.

54 Modify

Modify operations, such as an overwriting mmap (), munmap (),
mprotect(), mremap(), or madvise() operation, are imple-
mented in two possible steps: first under LW locking, and
then under GW locking.

Under LW locking. This stage closely mirrors the original
approach, with one key difference: instead of locking the en-
tire address space, we acquire the per-core lock in LW mode
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along with the interval lock. This allows parallel execution
with other operations.

This modification is correct because our interval skiplist
effectively handles the dynamic locking intervals discussed
in §3.1. By unifying address space mapping and synchro-
nization, we eliminate the aforementioned race. Moreover,
interval locking precisely characterizes the range required
for a Modify operation: a metadata structure or gap is locked
if its interval overlaps with that of the Modify.

Under GW locking. When the process encounters untested
file systems or performs Modify operations that have not yet
been adapted to our new design, we revert to the original
method after acquiring the per-core locks in GW mode.

6 Implementation

We implemented our address space design on Linux 6.8.0
with about 10K lines of code. Our implementation supports
POSIX and is transparent to applications, requiring no changes
to the applications. Our first step of fault handling (§5.2) is
based on a prior work [43].

Our implementation successfully passes the Linux Test
Project (version 20240524) [52], producing results identical
to those of Linux 6.8.0, except for certain tests marked as
“broken”. These tests rely on kernel-specific assumptions (e.g.,
address space layout) that are invalid in our implementation,
leading to automatic abortion. We also performed additional
stress tests using the kernel address sanitizer (KASAN).

Our implementation supports both anonymous and file-
backed memory, tested with ramfs, tmpfs, and ext4. All criti-
cal operations—such as page fault, mmap, munmap, mprotect,
mremap, and common madvise flags—are parallelized. Only
a few operations not listed above, such as madvise with
flags other than MADV_FREE or MADV_DONTNEED, still rely on
global locking (§5.1), but we believe our approach can be
easily extended to these cases.

7 Evaluation

We compare the following kernels: (1) Linux (version 6.8.0),
(2) IntervalVM (Linux 6.8.0 with our design applied), and
(3) RadixVM. For Linux and IntervalVM, we use Ubuntu 24.04
with its default configuration. For RadixVM, we disable its
per-core page table and core-tracking shootdown features for
afair comparison. These features are not present in Linux and
are largely orthogonal to our address space modifications.
Furthermore, they introduce significant bugs that prevent us
from running macrobenchmarks reliably. Additionally, we
always pin each thread when comparing with RadixVM, as
RadixVM otherwise fails to scale.

To analyze the impact of individual components, we evalu-
ate the interval map data structures used as the address map
(§7.1), the latency and throughput of address space opera-
tions (§7.2), and the performance of real-world applications
(§7.3). We repeat each benchmark 20 times and report the
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average. The only exception is LMbench, which exhibits high
variance; therefore, we run it 40 times.

We use a machine with dual-socket Intel Xeon Gold 6248R
(3.0GHz, 48 cores, 96 threads), 384GiB of DRAM (twelve
32GiB modules), and a 4TB WD BLACK SN850X SSD. Un-
less otherwise specified, we vary the number of threads up
to twice the physical core count. This includes the hyper-
threading range, where thread count exceeds the core count
and causes contention. We highlight this range with a red
background in the plots.

7.1 Data Structure Microbenchmark

We compare our interval skiplist with the Linux maple tree
in user space. These data structures serve as the address
map in IntervalVM and Linux, respectively. We evaluated
the single-threaded latency and multi-threaded throughput
of Query, Alloc, and Map (where value is NULL), where each
corresponds to the performance of page faults, mmap(), and
munmap (), respectively. To ensure that each operation al-
ways works on non-overlapping areas, we use per-thread
arenas (cf. §5.3). Each thread either repeatedly performs Alloc
to insert an interval into its arena, or uses Query or Map to
look up or remove an interval from its arena. We use jemal-
loc [22] to prevent malloc() from becoming the bottleneck,
and use userspace RCU [20]. Fig. 12 shows the results.

The interval skiplist exhibits lower performance for Query
operations (latency +35%, peak throughput 0.77x). This is
because the maple tree, as a B-tree, employs a large branching
factor of 10 to 16, allowing it to store multiple key-value
pairs within a single node. This reduces the number of nodes
accessed during traversal and improves cache-line efficiency.

In contrast, the interval skiplist significantly outperforms
the maple tree in Alloc (latency +4%, peak throughput 22.9x)
and Map (latency —49%, peak throughput 5.28%). In terms of
throughput, the maple tree does not scale at all, as it relies
on a global lock to synchronize updates. In terms of latency,
Map is significantly faster with the interval skiplist because,
in the maple tree, removing an entry within a node often
requires updates to multiple nodes. Also, updating a node
in a read-copy-update manner requires copying the entire
node, which is costly since a maple tree node stores multiple
key-value pairs.

These improvements in Alloc and Map throughput are par-
ticularly important today. In Linux 6.8.0, a Fault no longer
acquires the mmap_lock (§2). Consequently, address space
operations such as Alloc and Modify have become the pri-
mary performance bottlenecks for applications (§1).

7.2 Address Space Microbenchmark

LMbench. We evaluate the performance impact of our de-
sign using LMbench [46], which evaluates the latency of
various kernel operations. We run LMbench on Linux and
IntervalVM. Fig. 13 shows the results.
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Figure 14. Throughput of each microbenchmark.

Our design incurs some overhead for process manage-
ment functions and address space operations. The latency
of fork+exit increases due to a longer traversal time. Each
fork and exit traverses the entire address map, visiting
each VMA to copy or free it. Traversals are generally faster
with a maple tree, since each node stores multiple key-value
pairs and therefore fewer nodes need to be visited. Mean-
while, page fault latency increases slightly in IntervalVM
due to the longer latency of Query operations. As a result,
the latency of mmap+fault+munmap and pipe also increases
slightly due to frequent page faults.

However, we believe such overhead—mostly marginal—is
justified by the significant improvements in multithreaded
performance, as demonstrated below.
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Throughput. We evaluated the multithreaded throughput
of address space operations using two microbenchmarks.
(1) Alloc: Each thread repeatedly allocates memory using
mmap (). This measures Alloc throughput, which is critical
for applications that heavily use malloc(), particularly in
Linux 6.8.0. (2) Alloc + Fault + Modify: Each thread repeats a
sequence of operations: mmap() a 2MiB area, fault each page,
and then munmap () it. This simulates the typical usage cy-
cle of mmap (), particularly in file-backed memory scenarios
common in web servers and standard libraries.

For the Alloc benchmark, we also conducted a breakdown
analysis by selectively disabling arenas and per-core statis-
tics (§5.3) to assess their impact. Fig. 14 shows the results.

Overall, IntervalVM significantly outperforms Linux. In
terms of peak throughput, the speedup is 13.1x (Alloc) and
10.4% (Alloc + Fault + Modify).

IntervalVM outperforms RadixVM as well, particularly in
(Alloc + Fault + Modify). In terms of peak performance, the
speedup is 1.07x (Alloc) and 5.22% (Alloc + Fault + Modify).
Notably, around 48 threads, RadixVM temporarily outper-
forms IntervalVM due to a temporary drop in IntervalVM’s
scalability. This drop stems from NUMA-related overhead in
Linux, which is also evident in our user-space benchmarks
(Fig. 12b) but does not appear in additional evaluations on
single-socket machines, as shown in Fig. 21. Without this
overhead, IntervalVM consistently outperforms RadixVM
across both benchmarks and all thread counts.

IntervalVM generally continues to scale with the number
of available cores. In contrast, Linux does not scale, and
RadixVM exhibits weak scaling in Alloc + Fault + Modify.

Our breakdown analysis reveals that Alloc performance
scales only when both arenas and per-core statistics are
applied. Unlike IntervalVM, both IntervalVM w/o Arenas
and IntervalVM w/o Per-core Stats fail to scale effectively,
demonstrating that Alloc is truly bottlenecked by multiple
factors, not just the address space lock.

7.3 Address Space Macrobenchmark

For Apache, LevelDB, Metis, and Psearchy, which are VM-
intensive applications, IntervalVM demonstrates significant
speedups and improved scalability compared to both Linux
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Figure 16. Apache throughput under default configuration.

and RadixVM. IntervalVM tends to scale well with the num-
ber of cores, whereas Linux stops scaling earlier, and RadixVM
exhibits less pronounced scaling. Also, single-core perfor-
mance of IntervalVM is nearly identical to that of Linux.’
We evaluate RadixVM only with Metis, as it does not support
the other benchmarks.

In addition, results from the PARSEC [7, 8] comprehensive
benchmark suite demonstrates the benefits of our design for
VM-intensive workloads, with minimal impact on non-VM-
intensive workloads.

Apache. 1t serves HTTP requests by invoking mmap () on the
requested file, faulting each page, and invoking munmap() on

SWhen IntervalVM was slower than Linux, the difference was at most 5%.

1142

Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

the region after serving the request. This follows a pattern
similar to our Alloc + Fault + Modify microbenchmark.

We use Apache’s default mpm_event module and evaluate
two configurations: (1) a single server with a varying number
of threads, to evaluate the throughput of a single server
process, and (2) the default configuration, which creates a
small number of server processes (3 to 12), each spawning 25
threads. In both cases, Apache hosts a 64KiB static content
file, and we use Wrk [32] to create HTTP requests using
all hardware threads while maintaining 100 connections,
which results in the highest throughput in all kernels. We
also perform a breakdown analysis by selectively disabling
our new designs for Fault, Alloc, or Modify operations—
these then always fall back to GR or GW locking (see §5)—to
evaluate the individual impact of each component. Fig. 15a
shows the results for configuration (1), and Fig. 16 shows
the results for configuration (2).

IntervalVM outperforms Linux by 4.53% for configuration
(1) and 3.19x for configuration (2). The speedup is more
pronounced in (1), which uses a single process, causing all
threads to contend on the same mmap_lock in Linux.

Our breakdown analysis highlights the necessity of sup-
porting parallel execution for all critical address space oper-
ations (Fault, Alloc, and Modify) in order to scale real-world
applications that exercise these. Compared to IntervalVM, all
variations of IntervalVM that disable Fault, Alloc, or Modify
exhibit limited scalability.

LevelDB. 1t is a key-value store. For our evaluation, we use
its db_bench utility. First, we use db_bench’s fillrandom
to populate the database with 2M key-value pairs, each
with a value size of 4KiB, while keeping all other settings
at their defaults. Next, we evaluate query performance us-
ing db_bench’s readrandom with multiple threads. Each
thread reads a database file using mmap(), performs key-
value lookups, and later invokes munmap() once the file is
no longer needed. Fig. 15b presents the results.

IntervalVM outperforms Linux by 4.49X. On Linux, threads
contend for the mmap_lock, particularly on modern SSDs
with low I/O latency. In contrast, under IntervalVM, con-
tention on the mmap_lock is eliminated; instead, threads
contend on LevelDB’s global database lock [3].

Metis. 1t is a MapReduce framework optimized for multi-
core systems. We use its wrmem benchmark, which computes
the inverted index for a random input text with a 4GiB in-
put size. This benchmark invokes malloc() and fault about
10° anonymous memory pages during the map, reduce, and
merge phases. As a result, its performance is bottlenecked
by the Alloc throughput in Linux [10].

For consistency, we use RadixVM’s default malloc() im-
plementation across all kernels, as it is the only option in
RadixVM and shows higher performance than the default
glibc malloc(). Fig. 15¢ shows the results.
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Figure 17. Normalized throughput of IntervalVM relative
to Linux across PARSEC benchmarks (higher is better).

IntervalVM outperforms Linux by 1.47x and RadixVM by
1.18%. IntervalVM also demonstrates the highest scalability.
While IntervalVM and RadixVM scale up to the number of
cores, Linux stops scaling earlier.

Psearchy. 1t is a parallel version of Searchy [44, 51] and per-
forms parallel text indexing. It intensively uses both anony-
mous memory and file-backed memory, by allocating per-
thread hash tables using malloc() and reading files using a
few ten thousands of mmap () s and munmap () s in glibc’s stdio
library. As a result, both Alloc and Alloc + Fault + Modify
throughput are critical performance factors.

Following the original setup [10], all input files are buffered
in the buffer cache, and all output files are written to tmpfs
to eliminate file I/O bottlenecks. Fig. 15d shows the results.

IntervalVM outperforms Linux by 1.27X. Notably, in both
IntervalVM and Linux, throughput declines after reaching its
peak—an expected behavior in Psearchy due to high cache
miss rates at higher thread counts [10].

PARSEC. 1t is a comprehensive benchmark suite that evalu-
ates multithreaded performance across 13 diverse workloads.

We run each benchmark with 48 threads, as performance
does not scale beyond the number of available cores, except
for facesim and fluidanimate, which require the number
of threads to be a power of two; for these, we use 32 threads.
Also, we use the native data set whenever available. An
exception is dedup, for which deduplication rarely occurs
with the native data set;’ in this case, we use simlarge
instead. Fig. 17 shows the results.

IntervalVM outperforms Linux on VM-intensive work-
loads (1.32x on dedup and 1.16X on vips). dedup uses mmap ()
and mremap () to manage numerous memory chunks while
processing input data and maintaining the hash table, while
vips repeatedly uses mmap () to access large images. For oth-
ers, performance differences are within 2%.

"The ISO file for Fedora 6, which is already well compressed.
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8 Related Work

We discuss prior approaches to parallelizing address spaces
and kernels in general.

8.1 Fault Operations in Parallel with Updates

RCUVM [13] proposed an approach similar to per-VMA lock-
ing (§2.2) in Linux before its introduction. However, RCUVM
differs with Linux 6.8.0 in three ways. (1) It uses a bonsai
tree as the RCU-safe address map. (2) It supports only anony-
mous memory. (3) It synchronizes Fault operations with
overlapping Alloc and Modify operations using a speculative
approach. Specifically, before a Fault operation updates the
page table, it double-checks the VMA. If no incompatible
change has occured, it updates the page table and completes
the Fault. Otherwise, the speculative attempt is aborted, and
the Fault is restarted after read-locking the mmap_lock.

Several Linux kernel patches [21, 42, 43, 57] also propose
speculative approaches, but use sequence counters [28] in-
stead of double-checking the VMA.

However, these approaches share the same limitations
with Linux 6.8.0. They do not address the scalability chal-
lenges (§3), as they still serialize Alloc and Modify operations.

8.2 RadixVM

RadixVM [14], built on the sv6 [15] POSIX-like research ker-
nel, enables parallel execution of non-overlapping operations.
Atits core is a concurrent radix tree that serves as the address
map, managing metadata and locks at page granularity. This
radix tree uses a large branching factor (128-512), allowing
it to efficiently cover a wide address space. Address space
operations are performed after locking the corresponding
entries in the radix tree, thereby ensuring consistency.

However, RadixVM does not address the challenges in §3.3
and §3.5, and provides impractical or incomplete solutions
for the other challenges.

Dynamic locking intervals (§3.1). RadixVM sidesteps it
by managing metadata and locks at page granularity and by
avoiding the freeing of empty page tables. Since a page is
the smallest unit in address space management, this design
eliminates the need to share metadata structures, thereby
removing potential contention.

However, this approach incurs significant memory and
locking overhead [38]. Each 4KiB faulted page requires its
own metadata structure and lock, and the problem is exac-
erbated in real-world kernels such as Linux, which uses a
significantly larger metadata structure (VMA) of at least 128
bytes. Furthermore, not freeing empty page tables can lead to
memory waste on the order of hundreds of GiB [56], making
this approach unacceptable in real-world kernels.

Interval updates (§3.2). While RadixVM’s radix tree sup-
ports parallel updates, it is not well-suited for RCU (see §3.2).
Particularly, its high branching factor (128-512), which is
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required to cover a large address space at page granularity,
greatly increases the cost of RCU updates.

Alloc strategy (§3.4). RadixVM employs a simple heuristic
that is critical for performance. RadixVM maintains a per-
thread unmapped_hint, similar to our hint mechanism in
§5.3, but does not reuse munmap () ed regions and jumps by
4GiB whenever contention is detected.

This strategy quickly exhausts the address space. In our
experiment on a 64-bit machine where multiple threads re-
peatedly mmap () and munmap () 32MiB of space, the 2*7-byte
space designated for mmap()s was exhausted within 90 sec-
onds, heavily disrupting server applications.

8.3 Range Locking

Prior approaches employing range locking for address spaces
[11, 38, 41, 43] aim to improve scalability but largely fail to
address most of the challenges outlined in §3. An exception
is operations on the entire data structure (§3.3), which can
be efficiently supported by locking the entire range.

Bueso [11]’s approach did not actually improve scalability
because it always locks the entire address range, effectively
making it equivalent to coarse-grained locking.

Lespinasse [41, 43] supported dynamic locking intervals
(§3.1) by simply protecting the address map with a coarse-
grained lock, introducing a significant performance bottle-
neck. Also, these works do not address the other challenges.

Kogan et al. [38] supported dynamic locking intervals
(§3.1) using a speculative approach, but its applicability is
limited. In their method, a thread initially locks the antici-
pated range. If it turns out that a larger range is required, the
thread restarts after locking the entire address range. How-
ever, this technique could only be applied to mprotect()
operations that do not cause a tree rotation in the address
map. Also, they did not address the other challenges.

8.4 Replicating Data Structures

Unlike ours and the work discussed above, the following
kernels avoid sharing a global data structure by replicating
objects. This strategy, however, does not address the chal-
lenges in §3, is hard to apply in real-world monolithic kernels,
and is inherently inefficient for coordinating updates.

In Tornado [29] and K42 [39], which follow a microkernel
design, each core maintains its own Region list, which is
protected by a lock and serves a role similar to that of an
address map. Such replication helps the performance of read
operations, such as Fault, since a core can simply access its
own copy. However, it degrades the performance of update
operations, such as Modify, when updating multiple copies.

Barrelfish [4] and fos [54] also avoid sharing data struc-
tures by relying on message passing. However, their ap-
proach introduces the same drawback: updates become sig-
nificantly more expensive.
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Corey [9] lets applications explicitly manage address inter-
vals as private or shared. However, this requires application
changes to use the new system interface, and Corey’s imple-
mentation also relies on replicating data structures, resulting
in the same problem of degraded update performance.

8.5 Locks with Adaptive Granularity

Uhlig [53] proposes a locking scheme that can switch be-
tween (1) a coarse-grained lock and (2) fine-grained locks
depending on the level of contention. However, this scheme
cannot effectively address the challenge in §3.3 because (1) it
associates a lock with each fine-grained object rather than
using per-core locks, and (2) when performing a global lock
operation, it must acquire all fine-grained locks if concurrent
local locking either exists or may occur.

9 Conclusion

We present the first practical address space design that par-
allelizes critical operations, addressing long-standing scala-
bility challenges. Our design significantly accelerates VM-
intensive, multi-threaded applications.

Our work opens several promising directions for future
research. (1) We are investigating further applications of our
concurrent interval skiplist, including kernel data structures
protected by coarse-grained locks and user applications that
require an interval map. (2) We are investigating further
bottlenecks in kernels that were previously hidden by the
address space lock. (3) We are exploring new application de-
signs that leverage the parallelized address space operations
to improve performance. (4) Most importantly, we believe
this work offers insights into applying more fine-grained
concurrency within the kernel by identifying common chal-
lenges and presenting general solutions.
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Scalable Address Spaces using Concurrent Interval Skiplist
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1: struct Node 29: predNodes.pushFront(predNode) 57: marked < WithFlag(next, DELETED)
2: L start: int, end: int, height: int, 30 succNodes.pushFront(node) 58: if node.next[i].cmpxchg(next, marked) then
3: | next[MAX_HEIGHT]: Atomic<Node*> 31: | return (predNodes, succNodes) 59: | L | break
. . . . 60: | leftMost < [null] X MAX_HEIGHT
4: function GETPREDSUCC(list, start, end) 32: function Lock(list, start, end) . - <
5. | restart: 33. | restart: 2; rlgthgs;:— [r(;ull] X MAX_HEIGHT
6: | predNodes « []; succNodes « [] 34: | (preds, _) < GetPredSucc(list, start, end) 63: tx‘noixnoedlg c r:wNodes do
7: | predNode « list.head 35: | node « preds[0] ) . .
8: | forifrom MAX_HEIGHT-1 to 0 do 36: | if 'nodelock() then gg Kfr‘lixﬂ.ilogr}: (;:OA;‘I?:;(?;;H}?_glhsonOde'helght)
9: prev « predNode 37: | | goto restart 66: if leftMost[i] = nuil thgen
10: (node, pFlag) < prev.next[i].load() 38: | lockedNodes « [node] 67: | leftMost[i] — nod
11: if pFlag € (DELETED, INVALIDATED) then 39: | (next, ) « node.next[0].load() : _ leftMost[i] < node
. X X 68: if rightMost[i] # null then
12: | goto restart 40: | while next && next.start < end do . . .
13: I . 69: | rightMost[i].next[i].store(node)
: oop 41 if 'next.lock() then 70: rightMost[i] — node
14: while node # null do 42 (next, _) « next.next[0].load() 71: (preds gsuccs)  GetPredSucc(list, start, end)
15: (next, nFlag) «— node.next[i].load() 43 node.next[0].store(WithFlag(next, LOCKED)) 72: Iz ,N aq (Emotv() th ? >
16: if nFlag € (NONE, LOCKED) then 44 continue 73| pewnlodesnotk ﬁgxﬁig};“l w
17: | break 45 lockedNodes.pushBack(next) . . . y .
18: if nFlag = INVALIDATED then 46 if next.end < start then ;‘51 L l’(lightMOgt[l].neXt[l].i‘;Ol:(sl;CCS[l])
19: | goto restart 47 node.unlock() 76: lpre -next[0].store(newNodes[0])
20: if pFlag # LOCKED && 48 lockedNodes.popFront() 77: ([se dnext[0].st [0]
Iprev.next[i].cmpxchg(node, next) then  49: node « next; (next, _) < node.next[0].load() 78: £ prAef nexl ¢ s ore;_sIch}sl l)d
21: goto restart 50: | return lockedNodes 79: oiédléo:] left?v[nc:?tx[i]elg t-1do
gg if noie (__ n?lxﬁ destart > end th 51: function Swap(list, start, end, lockedNodes, newNodes) 80: if !preds[i].next[i].cmpxchg(succs[i], node) then
24: lL ;0 ek_ nuit]f node.start > end then 52: | (pred, oldNodes) = (lockedNodes[0], lockedNodes[1:]) 81: | | | break
25: if nl(;fiae end < start then 33: | for node € oldNodes do 82: | for node € oldNodes do
26: | pr dNode « nod 54: for i from node height-1 to 1 do 83: (next, ) « node.next[0]load()
27: rfvi— r?();e' FIZ e(_ Fla 55 loop 84: node.next[0].store(
: p s priag & 56 | (next, ) « node.next[i].load() WithFlag(next, INVALIDATED))
28: | node « next

Figure 18. Implementation of the new operations in the interval skiplist.

Non-Peer-Reviewed Appendices
A Pseudocode

Fig. 18 presents the pseudocode for the operations newly
introduced in our interval skiplist.

GeTPRrREDSUCC (line 4) traverses the interval skiplist to
identify the predecessor and successor of [start, end] at each
level. It uses load() (line 10) to atomically read a pointer
(next[i]) and separate it into the unflagged part and flag bit.
GETPREDSUCC serves as a helper function in the following.

Lock (line 32) implements the interval skiplist’s Lock oper-
ation (§4.1). It locks all nodes whose intervals or subsequent
gaps overlap with [start, end], as well as their level-0 prede-
cessor. These nodes are returned at the end of the operation.

Swar (line 51) implements the interval skiplist’s Swap op-
eration (§4.1). It first processes the old nodes (line 53-line 59)
and new nodes (line 60-line 70), then commits the swap. If
new nodes exist, the predecessor is updated to point to the
first new node (line 75); otherwise, it points to the successor
(line 77). In both cases, the old nodes are made unreachable
in level-0, and the predecessor is unlocked simultaneously.

B Correctness
B.1 Correctness of Lock Operation

In Lock, after locking the predecessor node (line 36), we
repeatedly advance to the next node and attempt to lock it
(line 39-line 49). Locking fails if the node is marked DELETED
or INVALIDATED. However, at line 41, failure can only result
from the node being DELETED.
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This is because a locked node’s next node never has the
INVALIDATED mark. First, the following excludes the possi-
bility that another thread’s swap marks it so after the locking.

Lemma B.1. Ifa node is locked by a thread, its level-0 next
node cannot be swapped by another thread.

Proof. A swap requires locking both the predecessor and old
nodes. As a result, any old node involved in a swap requires
its previous node in level-0 locked beforehand. Consequently,
while a thread holds a lock on a node, no other thread can
lock it or proceed to swap its level-0 next node. O

Furthermore, a SwaP: (1) renders the old nodes unreach-
able at level-0 (except from each other) when unlocking
the predecessor, and (2) sets the old nodes’ flags to INVALI-
DATED, ensuring any subsequent lock attempt fails. Thus,
successfully locking a node implies it is not an old node and
does not point to one. We can now conclude the following:

Theorem B.2. If a node is locked, its level-0 next node never
has the INVALIDATED mark.

B.2 Linearizability

To demonstrate linearizability, we identify the linearization
point of our new Swap operation. The linearization point is
line 75 when newNodes is not empty, and is line 77 when
newNodes is empty. At this point, the following actions occur
atomically: (1) all old nodes become unreachable in level-0,
(2) all new nodes become reachable, and (3) the predecessor
node is unlocked.
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C Evaluation on a Single-Socket Machine

Figs. 19 to 24 present the evaluation results from §7, this
time obtained on a single-socket machine equipped with an

Tae Woo Kim, Youngjin Kwon, and Jeehoon Kang

AMD EPYC 7543 processor (2.8GHz, 32 cores, 64 threads),
256 GiB of DRAM (eight 32 GiB modules), and a 4TB WD
BLACK SN850X SSD.
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Figure 19. Performance of interval skiplist and maple tree.
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Figure 20. LMbench results (lower is better).
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Figure 22. Multithreaded throughput of Apache (single
process), Level DB, Metis, and Psearchy.
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